=P+~L Why Do We Need Weight Decay in Modern Deep Learning?

Maksym Andriushchenko®, Francesco D’Angelo”, Aditya Varre, Nicolas Flammarion (EPFL)

Question: WD is widely used for training most state-of-the-art deep networks, including
large language models. But why? Is it about better reqularization or optimization?

Regime 1: overparameterized deep nets Regime 2: one-pass training of LLMs
VGG on CIFAR-10 GPT-2-124M on OpenWebText
- t: y i ; EB 3.7 — Awp=0.0, w
—— LR = 0.01, Ayp =0.008 — Awp=0.1, w;
60% LR = 0.01, Ayp =0.0 — Auwp =0.3, w;
‘ @ 36 BN N Awp = 0.0, wg = tiny LR
5 w0 RSN B il i
oo \ g3.5 - o .3, we - tiny
i S 3.4
g ;
20% 3.3 AN,
v u/\zw‘f\:,je;}; \:\:v
3.2
0 200 400 600 800 1000 10000 20000 30000 40000 50000 60000
Epochs Ilteration
! WD helps only with large LRs but not on its own L. a higher loss with WD can still be a better starting point
WD amplifies the implicit regularization of SGD WD balances better the bias-variance optimization

via the loss stabilization mechanism trade-off (+ prevents divergences for bfloat16 training!)

So that we are on the same page: L2 regularization vs. weight decay

Algorithm 1 SGD with L, regularization and SGD with decoupled weight decay (SGDW) , both

with momentum
1: given initial learning rate o € IR, momentum factor 81 € IR, weight decay/L regularization factor A € IR

N

initialize time step ¢t < 0, parameter vector 8;—¢9 € R", first moment vector m;—o < 0, schedule
multiplier n:=0 € IR
repeat

t—t+1

V ft(0:—1) < SelectBatch(6:—1) > select batch and return the corresponding gradient

g, < Vfi(0:—1) +A0:—1

Nt <— SetScheduleMultiplier(t) > can be fixed, decay, be used for warm restarts
m; < fimi_1 + niag,

0: < 01 —my —meAO;_1

. until stopping criterion is met
: return optimized parameters 0;

el B S AR Al o

Pk ek

So that we are on the same page: L2 regularization vs. weight decay

Algorithm 2 Adam with L, regularization and Adam with decoupled weight decay (AdamW)

1: given o = 0.001,81 = 0.9, 82 = 0.999,e =10"°, A € R
2: initialize time step ¢ < 0, parameter vector 8;—¢ € IR", first moment vector m:—o < 0, second moment
vector vi—g < 0, schedule multiplier n:—o € R

3: repeat

4 t<—t+1

5 V f1(0:—1) < SelectBatch(6;_1) > select batch and return the corresponding gradient

6 g, < Vfi(0i_1) +A0¢—1

7. my < Bim—1 + (1 — B1)g, > here and below all operations are element-wise

8: Vi < 52vt_1 + (]. — ﬁg)g?

9: My <+ my/(1— BY) > (31 is taken to the power of ¢
10: by < v /(1 — B%) > [z is taken to the power of ¢
11 Nt <— SetScheduleMultiplier(¢) > can be fixed, decay, or also be used for warm restarts

12: 0 <011 — 1t (Oéﬁlt/(\/f’_t +€) +A0;_1)

13: until stopping criterion is met
14: return optimized parameters 0.

We focus on the decoupled weight decay since it’s more popular (especially for LLMs)

Big picture: understanding generalization in deep learning

Overparameterized DL (CIFAR-10 / ImageNet):
different global minima can generalize very
differently

Then the role of regularization (implicit or
explicit) is to get to a better minimum

Effectively underparameterized DL (LLMs):
training loss / perplexity already correlates very
well with generalization!

In almost all cases, we just need to minimize
the training loss

Why does everyone use weight decay for LLMs?
GPT-3 paper: “All models use weight decay of
0.1 to provide a small amount of regularization”

Let’s start from the overparameterized case first!

’’’’’’
..........

VS.

Bad Global Minima Exist and SGD Can Reach Them, NeurlPS’19

22
2.1
2.0

T 1.9

[a
c
T 1.8
'_
1.7

1.6

1.5

1.4
0 250 500 750 1000 1250 1500 1750 2000
Processed Tokens (Billions)

Llama 2: Open Foundation and Fine-Tuned Chat Models, July 2023

Motivation: let’s revisit the classical textbook picture about overfitting

Simple two-layer ReLU network, no weight decay

* Starting point: our work SGD with Large Step & .
/ \\ ///

Sizes Learns Sparse Features (ICML 2023) 0 ¢)
/
\ 1N y !
\ ! ® s
\ / \
\
\
\
\
\
\

* The nice interpolation is obtained via the

implicit regularization of SGD
0 Y
\Y} \
'l ¢

* So Occam’s razor is already there even
-1 \

without any explicit regularization!
 Why do we need weight decay (or any other —2 .
~10 —05 00 0.5 1.0 15

explicit regularization) then?
SGD, n=0.0002, decay at 2% iterations

SGD, n=0.0002, decay at 50% iterations

https://arxiv.org/abs/2210.05337
https://arxiv.org/abs/2210.05337

Implicit regularization vs. weight decay on linear models

Let’s go back to ML 101: linear models!

We need weight decay to get soft-margin SVM

Hard- minimize |w||3

margin w, b

SVM subject to yi(w'x; —b)>1 Vie{l,...,n}
Soft- g 1 < T

margin A|[W||" + | — Zmax (0,1 —y;(w'x; — b))

SVM n i3

But even without WD, we get to the same solu-
tion due to the implicit bias of gradient
descent!

More formally in Soudry et al.: using logistic
loss on separable data, the predictor converges
to the direction of the max-margin solution

The Implicit Bias of Gradient Descent on Separable Data

Daniel Soudry DANIEL.SOUDRY @ GMAIL.COM
Elad Hoffer ELAD.HOFFER @ GMAIL.COM
Mor Shpigel Nacson MOR.SHPIGEL @ GMAIL.COM

Department of Electrical Engineering, Technion
Haifa, 320003, Israel

SURIYA@TTIC.EDU
NATI@TTIC.EDU

Suriya Gunasekar

Nathan Srebro

Toyota Technological Institute at Chicago
Chicago, Illinois 60637, USA

Editor: Leon Bottou

Abstract

We examine gradient descent on unregularized logistic regression problems, with homogeneous
linear predictors on linearly separable datasets. We show the predictor converges to the direction
of the max-margin (hard margin SVM) solution. The result also generalizes to other monotone de-
creasing loss functions with an infimum at infinity, to multi-class problems, and to training a weight
layer in a deep network in a certain restricted setting. Furthermore, we show this convergence is
very slow, and only logarithmic in the convergence of the loss itself. This can help explain the
benefit of continuing to optimize the logistic or cross-entropy loss even after the training error is
zero and the training loss is extremely small, and, as we show, even if the validation loss increases.
Our methodology can also aid in understanding implicit regularization in more complex models
and with other optimization methods.

Keywords: gradient descent, implicit regularization, generalization, margin, logistic regression

Weight Decay for Overparameterized
Deep Networks

Simplest deep networks first

We revisit a well-studied setting: VGG
without BatchNorm (where the weight
norm means something!) on CIFAR-10

Interestingly, WD doesn't improve the
test error on its own (even contrary in
this case)!

Instead, WD improves only with large
learning rates

Weight decay is not useful on its own
but only in a combination with the
implicit regularization of SGD

90%

o
o

Test Error

VGG on CIFAR1O

LR = 0.1, Ayp =0.008
—— LR =0.1, Ayp =0.0
—— LR =0.01, Ayp =0.008

LR = 0.01, Awp =0.0

w
()

W

200 400 600 800 1000
Epochs

Setting: standard VGG, plain SGD,
no data augmentation, LR decay after 500 epochs

The weight norm is not at all predictive of generalization

40

— Ir=01 — Ir=01 0%
Ir=0.15 =015
30 Ir=0.2 Ir=0.2 .,
——- EMAIr=0.1 | ——- EMAIr=0.1 o0%
EMA Ir = 0.15 ' EMA Ir = 0.15
100

1
1
1
1
1
1
1
1
1
1
1
i EMA Ir = 0.2 -
1

|

1

1

1

1

1

1

1

Test Error

Train Cross Entropy

0 | b= >
\

0 50 100 150 200
Epochs

1
|
|
|
40%
1
!
!
1
[
1
!
|
!
!
\
\
\
\
\
\
o/ Y

0 50 100 150 200 0 50 100 150
Epochs Epochs

Setting: standard ResNet-18, CIFAR-10, plain SGD (EMA = exponential moving average)

200

The weight norm and training loss are the same but the final test error is very different!

However, the training dynamics is crucially affected: during the large-LR phase, WD
enables loss stabilization / equilibrium at some level that depends on the LR and WD

Let’s try to understand the regularization effect of the loss stabilization phase

Too high loss stabilization is harmful

16.0%
’) 20 — Ir=0.001 .
: Ir = 0.003 20.0%
> 15.0% Ir=0.005
S 60z > 18.0%
o © o
o) : ©
= 14.0% % ; 40% o 16.0%
CI) '... :. o :'
& : o]
© 13.0% J o &
o é é Q o 14.0%
e " - + —
o N 4 @]
O B |G_J o
o 12.0% 20% o
(7p] .
@ § + 12.0%
;“ : |2
11.0% é
L0.0% 10% 10.0%
0.0001 0.0'003 0.001 0.005 0 25 50 75 100 125 150 175 200 0 20 40 60 80 100
LR in Large-LR phase Epochs Epochs

Setting: scale-invariant ResNet-18 on the sphere, CIFAR-10, plain SGD

* Note: zero training error is achieved for all runs

* Main observation: a clear U-shape wrt the learning rate (too large LR is harmful)

e Last plot: although it seems like nothing is happening, the noisy process drives
us to a better solution (after LR decay)

10

Loss stabilization amplifies the noisy dynamics of SGD

Observation: stochastic noise vanishes when the loss — 0 since the norm of the noise
directly depends on the loss (the proposition is from Wojtowytsch (2021))

Proposition 3. Assume |w|| € [a,b], for any z € D, € [m, M] holds. For n

sufficiently large, there exists constants c1, co such that

e L(w) < E |[|lgw)||*] < caliw

Thus, loss stabilization helps to prevent the stochastic noise from vanishing and drive
the noisy dynamics for longer

This noisy dynamics is beneficial for generalization but what’s its effect?

https://arxiv.org/abs/2105.01650

Understanding the regularization effect of loss stabilization

* Observation: the shape of the covariance of the stochastic gradients, when the labels

are injected with Gaussian noise, also matches the shape of the Hessian

e This crucial observation is used in several works (Damian et al. (2021); Pillaud-Vivien

et al. (2022)) to show that the SGD trajectory closely tracks the solution of a

regularized problem

* Inspired by these theoretical results, we conjecture a similar regularized process but

for the large-LR phase of SGD and without label noise:

standard SGD + WD update

Conjecture 2. Consider the algorithm in Eq. 2 with wq initialized from a distribution L (R(p)).
For any input x, let w;, h(w;, z) be the random variables that denote the iterate at time t and
its functional value. The stochastic process (h(W¢,x)), . converges to the stationary distribution

ooy (z) with mean [i, \(z) for which the following property holds,

to get rid of stochasticity

finx(z) = h (W} x,x), where | W} \ := argmin Lx(w) + noj y Tr (V2L(w))|.

wERP

main point

)

12

Tr(H) after LR decay

Testing the conjecture empirically

Standard ResNets Scale-invariant ResNets on the sphere

. 4
S5O0 009 different colors = 40 | %10

1000

300

different initial LRs different colors =
20.0% . ..
different initial LRs

(03]
o

N
o
-
©
o
°
>

16.0%

—
o
o

°
X

=
o

Tr(H) after LR decay

12.0%
12.0%

Test error after LR decay
Test error after LR decay

w

10.0%

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs Epochs Epochs

3

Tr(V?) after LR decay (=~ taking the mean of the process) decreases along the trajectory &
closely mirrors the test error (not to say that Tr(V?) is always predictive of generalization!)

We believe our conjecture holds generally since we see the same effect of WD for VGGs,
standard ResNets, and scale-invariant ResNets on the sphere

Takeaway: contrary to the classical understanding of WD, its regularization effect is more
subtle and comes from the interaction with the implicit bias of (S)GD!

Weight Decay for Large Language Models

Now let’s switch to LLMs!

GPT-3 paper: “All models use weight decay of 0.1 to
provide a small amount of reqularization”

Subsequently, all major LLMs (Chinchilla, Llama,
PALM) just followed exactly the same training recipe

Is regularization really what’s happening? We can’t
train GPT-3 ourselves :(are we out of the game?

Let’s try to see how far we can go with a GPT-2 model
with 124M parameters on OpenWebText (only 1
A100 + 24h of training is sufficient)!

The training and validation losses remain very close
across different WD values (=0 generalization gap) =
WD is not about regularization here

GPT-2-124M on OpenWebText

3.8
)‘WD= OO
Awp=0.1
3.7 z
AWD= 03
e o'.".::\o .
3 3.6
c
O
© 3.5
O
©
> R L
3.4
33

3.3 3.4 3.5 3.6 CH) 3.8
Training loss

Figure 4: The validation loss is de-
termined by the training loss and
not influenced by Aw p.

The Chinchilla observation

Training Compute-Optimal Large Language Models (DeepMind, NeurlPS
2022) introduced a family of models called “Chinchilla”

There is a very curious observation about the effect of weight decay

2.8

o
o

2.71

>0.5
&)
o
5
] 0.4
22.6 g i
7 <03
2,51 p!
S 0.2
% 41 — 417M™, Adam
2.4 el B 417M, AdamW
—— 1.4B, Adam
s . gL T 1.4B, AdamW
2 25 50 75 100 125 150 =0 25 50 75 100 125 150 0 25 50 75 100 125 150
Million Sequences Million Sequences Million Sequences

Figure A7 | Adam vs AdamW. For a 417M (blue) and 1.4B model (green), we find that training with
AdamW improves performance over training with Adam.

But they don’t provide any understanding about this phenomenon

https://arxiv.org/abs/2203.15556

Reproducing the Chinchilla phenomenon at a smaller scale

10 X cosine LR decay Constant LR

3.7 S AWD':O'OI Wit S— /\WD=0.0, Wt
— /\WD=0.1, Wt — Awp=0.1, w;
— Awp=0.3, w¢ — Awp =0.3, w;

3.6 NN Awp=0.0, wg—tiny LR~ 20 B 1 1 T owp 700~ tiny LR
7S s VAN A VA Awp = 0.1, wy - tiny LR IR e ™ UG N e oS- Wk tyER
o : O | e\l Ml =0.3, w; - tiny LR
o35 1 W™ L 3, weg—tiny LR o 3:D . :
= j=
= B =
m _4 \\\\\\\ m 3.4) »”
= 3 E 7 [e e ™

:,‘ 'i”': '~ ' .\,' X Y
3.3 AN 3.3 ”
“ “M—J‘:ﬂ"' & ,J‘\;\‘ - .‘\,':,'\\\
32 - 3.2
10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000 60000
lteration lteration

We could reproduce this with the academic-friendly setting of GPT-2-124M

Interestingly, we observe that a higher loss with WD can still be a better point if we drop
the LR

We see resemblance of loss stabilization which is, however, not useful in this setting

Bias-variance tradeoff in stochastic optimization

Let’s try to understand it via a simple model: linear !
regression with squared loss: 2 \t\\
i E 10—6 .\Eiz"“:\g-—<o-———o~———o-—-—o—-—o
. (=2 '\‘\. -]
Excess Risk < (1 — 77,u)t||:130 — Z4 H + no? = \.\\
l J L — T o ey e
bias variance D . \.\. b
q>) —e— 10X LR decay,AWD=0.0\‘\ \.\
Our explanation: WD better balances the Z —e— 10 LR decay, Awp = 0.1 L
. () —e— 10 x LR decay, Ayp=0.3 e
bias-variance optimization trade-off via 5 -e- ConstlR.Aw=00 N
e ey . 107" J-e- ConstLR, Ayp=0.1
larger initial effective LRs e =
0 10000 20000 30000 40000 50000
However, since the noise term also scales lteration
. . . n
with the LR, we don't see the whole picture Effective LR: 1)¢7 00
2
from the loss alone (justified for scale-invariant networks)

So it becomes even more important to reduce the LR which happens only closer to
the middle/end with the cosine LR schedule!

Weight decay prevents divergences with bfloat16

While previous works (e.g., BLOOM) documented that float16 leads to divergences,
usually switching to bfloat16 resolves it (remark: but all these training details are very
poorly documented in the LLM community!)

However, you still need to combine bfloat16 with WD (in many cases)

— '
—— Dbfloatl6, LR =0.001, Ayp = 0.0
—— bfloatl6, LR=0.001, Ayp =0.1
—— bfloatl6, LR =0.001, Ayp =0.3
— float32, LR=0.001, Ayp=0.0

|
3.4 —— bfloatl6, LR = 0.0003, Awp = 0.0 3.4
bfloat16, LR = 0.0006, Ayp = 0.0
—— bfloatl6, LR =0.001, Ayp = 0.0
—— float32, LR =0.001, Ayp = 0.0

w
W
w
w

Training loss
w
N
Training loss
W
N

31 31

3.0 3.0

10000 20000 30000 40000 50000 10000 20000 30000 40000 50000
lteration Iteration

Figure 7: GPT-2-124M on OpenWebText with context length 1024. Left: The model trained with a moderate
LR 0.001 diverges for bf1oat 16 but not for f1oat 32; lowering the LR prevents the divergence but leads to
a worse loss. Right: Weight decay prevents divergence for LR= 0.001 and enables bf1oat16 training (the
three random seeds are denoted with —, - - -, - - - lines).

Training loss

Ablation studies for weight decay in LLMs

SGD + Momentum

Adam + L2 regularization

WD on all parameters

3.9
- /\WD=1'10_5 — AWD=1'10_6 — Awp=0.03
38 —_— AWD=3'10_5 S AWD=3'1O_6 — /\WD=0.1
a - n = Awp=0.3
3.7 o (=)
(@)} (@)}
£35 £ 35
C c
3.6 'S =
= =
3.4 3.4
3.5
3.3 3.3
10000 20000 30000 40000 50000 10000 20000 30000 40000 50000 10000 20000 30000 40000 50000
Iteration Iteration Iteration

e Same picture for SGD+Momentum and Adam+L2 as for AdamW
* Omitting LayerNorm parameters from WD is important, but only for higher WD values

* Weight averaging can work as a nearly zero-cost proxy to see if we are “variance-
bounded” (see Appendix)

Conclusions and Takeaways

Conclusions and takeaways

It’s totally remarkable that there are at least three distinct mechanisms of WD
1. regularization when paired with stochastic noise,
2. enhancing optimization of the training loss,
3. ensuring stability of low-precision training.

Interestingly, AdamW was introduced only as a better regularization method and
now every LLM cites it without critical reassessment of its effect!

Our intuition: decoupling WD is likely to be not necessary, it just eases the
hyperparameter tuning

In modern deep learning, WD is rarely useful as an explicit regularizer but instead
its adoption is due to its effect on the training dynamics

Thanks for your attention!

