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Question: WD is widely used for training most state-of-the-art deep networks, including
large language models. But why? Is it about better reqularization or optimization?

Regime 1: overparameterized deep nets Regime 2: one-pass training of LLMs
VGG on CIFAR-10 GPT-2-124M on OpenWebText
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! WD helps only with large LRs but not on its own L. a higher loss with WD can still be a better starting point
WD amplifies the implicit regularization of SGD WD balances better the bias-variance optimization

via the loss stabilization mechanism trade-off (+ prevents divergences for bfloat16 training!)



So that we are on the same page: L2 regularization vs. weight decay

Algorithm 1 SGD with L, regularization and SGD with decoupled weight decay (SGDW) , both

with momentum
1: given initial learning rate o € IR, momentum factor 81 € IR, weight decay/L regularization factor A € IR

N

initialize time step ¢t < 0, parameter vector 8;—¢9 € R", first moment vector m;—o < 0, schedule
multiplier n:=0 € IR
repeat

t—t+1

V ft(0:—1) < SelectBatch(6:—1) > select batch and return the corresponding gradient

g, < Vfi(0:—1) +A0:—1

Nt <— SetScheduleMultiplier(t) > can be fixed, decay, be used for warm restarts
m; < fimi_1 + niag,

0: < 01 —my —meAO;_1

. until stopping criterion is met
: return optimized parameters 0;

el B S AR Al o

Pk ek




So that we are on the same page: L2 regularization vs. weight decay

Algorithm 2 Adam with L, regularization and Adam with decoupled weight decay (AdamW)

1: given o = 0.001,81 = 0.9, 82 = 0.999,e =10"°, A € R
2: initialize time step ¢ < 0, parameter vector 8;—¢ € IR", first moment vector m:—o < 0, second moment
vector vi—g < 0, schedule multiplier n:—o € R

3: repeat

4 t<—t+1

5 V f1(0:—1) < SelectBatch(6;_1) > select batch and return the corresponding gradient

6 g, < Vfi(0i_1) +A0¢—1

7. my < Bim—1 + (1 — B1)g, > here and below all operations are element-wise

8: Vi < 52vt_1 + (]. — ﬁg)g?

9: My <+ my/(1— BY) > (31 is taken to the power of ¢
10: by < v /(1 — B%) > [z is taken to the power of ¢
11 Nt <— SetScheduleMultiplier(¢) > can be fixed, decay, or also be used for warm restarts

12: 0 <011 — 1t (Oéﬁlt/(\/f’_t +€) +A0;_1 )

13: until stopping criterion is met
14: return optimized parameters 0.

We focus on the decoupled weight decay since it’s more popular (especially for LLMs)



Big picture: understanding generalization in deep learning

Overparameterized DL (CIFAR-10 / ImageNet):
different global minima can generalize very
differently

Then the role of regularization (implicit or
explicit) is to get to a better minimum

Effectively underparameterized DL (LLMs):
training loss / perplexity already correlates very
well with generalization!

In almost all cases, we just need to minimize
the training loss

Why does everyone use weight decay for LLMs?
GPT-3 paper: “All models use weight decay of
0.1 to provide a small amount of regularization”

Let’s start from the overparameterized case first!
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Motivation: let’s revisit the classical textbook picture about overfitting

Simple two-layer ReLU network, no weight decay

* Starting point: our work SGD with Large Step & .
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implicit regularization of SGD
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* So Occam’s razor is already there even
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without any explicit regularization!
 Why do we need weight decay (or any other —2 .
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explicit regularization) then?
SGD, n=0.0002, decay at 2% iterations

SGD, n=0.0002, decay at 50% iterations



https://arxiv.org/abs/2210.05337
https://arxiv.org/abs/2210.05337

Implicit regularization vs. weight decay on linear models

Let’s go back to ML 101: linear models!

We need weight decay to get soft-margin SVM

Hard-  minimize |w||3

margin w, b

SVM subject to yi(w'x; —b)>1 Vie{l,...,n}
Soft- g 1 < T

margin  A|[W||" + | — Zmax (0,1 —y;(w'x; — b))

SVM n i3

But even without WD, we get to the same solu-
tion due to the implicit bias of gradient
descent!

More formally in Soudry et al.: using logistic
loss on separable data, the predictor converges
to the direction of the max-margin solution
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Abstract

We examine gradient descent on unregularized logistic regression problems, with homogeneous
linear predictors on linearly separable datasets. We show the predictor converges to the direction
of the max-margin (hard margin SVM) solution. The result also generalizes to other monotone de-
creasing loss functions with an infimum at infinity, to multi-class problems, and to training a weight
layer in a deep network in a certain restricted setting. Furthermore, we show this convergence is
very slow, and only logarithmic in the convergence of the loss itself. This can help explain the
benefit of continuing to optimize the logistic or cross-entropy loss even after the training error is
zero and the training loss is extremely small, and, as we show, even if the validation loss increases.
Our methodology can also aid in understanding implicit regularization in more complex models
and with other optimization methods.

Keywords: gradient descent, implicit regularization, generalization, margin, logistic regression



Weight Decay for Overparameterized
Deep Networks



Simplest deep networks first

We revisit a well-studied setting: VGG
without BatchNorm (where the weight
norm means something!) on CIFAR-10

Interestingly, WD doesn't improve the
test error on its own (even contrary in
this case)!

Instead, WD improves only with large
learning rates

Weight decay is not useful on its own
but only in a combination with the
implicit regularization of SGD
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no data augmentation, LR decay after 500 epochs



The weight norm is not at all predictive of generalization
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Setting: standard ResNet-18, CIFAR-10, plain SGD (EMA = exponential moving average)

200

The weight norm and training loss are the same but the final test error is very different!

However, the training dynamics is crucially affected: during the large-LR phase, WD
enables loss stabilization / equilibrium at some level that depends on the LR and WD

Let’s try to understand the regularization effect of the loss stabilization phase



Too high loss stabilization is harmful
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Setting: scale-invariant ResNet-18 on the sphere, CIFAR-10, plain SGD

* Note: zero training error is achieved for all runs

* Main observation: a clear U-shape wrt the learning rate (too large LR is harmful)

e Last plot: although it seems like nothing is happening, the noisy process drives
us to a better solution (after LR decay)
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Loss stabilization amplifies the noisy dynamics of SGD

Observation: stochastic noise vanishes when the loss — 0 since the norm of the noise
directly depends on the loss (the proposition is from Wojtowytsch (2021))

Proposition 3. Assume |w|| € [a,b], for any z € D, € [m, M] holds. For n

sufficiently large, there exists constants c1, co such that

e L(w) < E |[|lgw)||*] < caliw

Thus, loss stabilization helps to prevent the stochastic noise from vanishing and drive
the noisy dynamics for longer

This noisy dynamics is beneficial for generalization but what’s its effect?


https://arxiv.org/abs/2105.01650

Understanding the regularization effect of loss stabilization

* Observation: the shape of the covariance of the stochastic gradients, when the labels

are injected with Gaussian noise, also matches the shape of the Hessian

e This crucial observation is used in several works (Damian et al. (2021); Pillaud-Vivien

et al. (2022)) to show that the SGD trajectory closely tracks the solution of a

regularized problem

* Inspired by these theoretical results, we conjecture a similar regularized process but

for the large-LR phase of SGD and without label noise:

standard SGD + WD update

Conjecture 2. Consider the algorithm in Eq. 2 with wq initialized from a distribution L (R(p)).
For any input x, let w;, h(w;, z) be the random variables that denote the iterate at time t and
its functional value. The stochastic process (h(W¢,x)), . converges to the stationary distribution

ooy (z) with mean [i, \(z) for which the following property holds,

to get rid of stochasticity

finx(z) = h (W} x,x), where | W} \ := argmin Lx(w) + noj y Tr (V2L(w))|.

wERP

main point

)
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Tr(H) after LR decay

Testing the conjecture empirically
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3

Tr(V?) after LR decay (=~ taking the mean of the process) decreases along the trajectory &
closely mirrors the test error (not to say that Tr(V?) is always predictive of generalization!)

We believe our conjecture holds generally since we see the same effect of WD for VGGs,
standard ResNets, and scale-invariant ResNets on the sphere

Takeaway: contrary to the classical understanding of WD, its regularization effect is more
subtle and comes from the interaction with the implicit bias of (S)GD!



Weight Decay for Large Language Models



Now let’s switch to LLMs!

GPT-3 paper: “All models use weight decay of 0.1 to
provide a small amount of reqularization”

Subsequently, all major LLMs (Chinchilla, Llama,
PALM) just followed exactly the same training recipe

Is regularization really what’s happening? We can’t
train GPT-3 ourselves :( are we out of the game?

Let’s try to see how far we can go with a GPT-2 model
with 124M parameters on OpenWebText (only 1
A100 + 24h of training is sufficient)!

The training and validation losses remain very close
across different WD values (=0 generalization gap) =
WD is not about regularization here

GPT-2-124M on OpenWebText
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Figure 4: The validation loss is de-
termined by the training loss and
not influenced by Aw p.



The Chinchilla observation

Training Compute-Optimal Large Language Models (DeepMind, NeurlPS
2022) introduced a family of models called “Chinchilla”

There is a very curious observation about the effect of weight decay
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Figure A7 | Adam vs AdamW. For a 417M (blue) and 1.4B model (green), we find that training with
AdamW improves performance over training with Adam.

But they don’t provide any understanding about this phenomenon


https://arxiv.org/abs/2203.15556

Reproducing the Chinchilla phenomenon at a smaller scale
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We could reproduce this with the academic-friendly setting of GPT-2-124M

Interestingly, we observe that a higher loss with WD can still be a better point if we drop
the LR

We see resemblance of loss stabilization which is, however, not useful in this setting



Bias-variance tradeoff in stochastic optimization

Let’s try to understand it via a simple model: linear !
regression with squared loss: 2 \t\\
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. . . n
with the LR, we don't see the whole picture Effective LR: 1)¢7 00
2
from the loss alone (justified for scale-invariant networks)

So it becomes even more important to reduce the LR which happens only closer to
the middle/end with the cosine LR schedule!



Weight decay prevents divergences with bfloat16

While previous works (e.g., BLOOM) documented that float16 leads to divergences,
usually switching to bfloat16 resolves it (remark: but all these training details are very
poorly documented in the LLM community!)

However, you still need to combine bfloat16 with WD (in many cases)
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Figure 7: GPT-2-124M on OpenWebText with context length 1024. Left: The model trained with a moderate
LR 0.001 diverges for bf1oat 16 but not for f1oat 32; lowering the LR prevents the divergence but leads to
a worse loss. Right: Weight decay prevents divergence for LR= 0.001 and enables bf1oat16 training (the
three random seeds are denoted with —, - - -, - - - lines).



Training loss

Ablation studies for weight decay in LLMs

SGD + Momentum

Adam + L2 regularization

WD on all parameters
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e Same picture for SGD+Momentum and Adam+L2 as for AdamW
* Omitting LayerNorm parameters from WD is important, but only for higher WD values

* Weight averaging can work as a nearly zero-cost proxy to see if we are “variance-
bounded” (see Appendix)



Conclusions and Takeaways



Conclusions and takeaways

It’s totally remarkable that there are at least three distinct mechanisms of WD
1. regularization when paired with stochastic noise,
2. enhancing optimization of the training loss,
3. ensuring stability of low-precision training.

Interestingly, AdamW was introduced only as a better regularization method and
now every LLM cites it without critical reassessment of its effect!

Our intuition: decoupling WD is likely to be not necessary, it just eases the
hyperparameter tuning

In modern deep learning, WD is rarely useful as an explicit regularizer but instead
its adoption is due to its effect on the training dynamics

Thanks for your attention!



