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Background: Sharpness-Aware Minimiza9on

• Sharpness-Aware Minimiza,on (SAM) [Foret et 
al., ICLR’21]:
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• SAM consistently improves generaliza6on in 
the state-of-the-art seLngs (!) and has only 
2x computa,onal overhead

• Foret et al., ICLR’21 mo,vate SAM by 
minimiza,on of sharpness:

Visual descrip-on of the SAM algorithm

Source: Foret et al, ICLR’21

where 𝜌! can op/onally include 1/||∇||"



Which components of SAM are crucial?
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→

Worst-case weight perturba,ons, with a small 𝑚 (aka 𝒎-sharpness) are key!

Note: state-of-the-art se,ng with weight decay, BatchNorm, and data augmenta9on
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🤔
2D subspace around an

ERM minimum
2D subspace around a

SAM minimum

Source of the loss surfaces: Sharpness-Aware Minimiza/on for Efficiently Improving Generaliza/on, ICLR’21

Importance of 𝒎-sharpness  ⇒ the common intui,on about the benefits of 
converging to flat minima of the training loss landscape is unlikely to explain SAM!

Sharp minima vs. flat minima?
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Source: Sharpness-Aware Minimiza/on for Efficiently Improving Generaliza/on, ICLR’21

Importance of 𝒎-sharpness  ⇒ PAC-Bayes generaliza,on is derived for 
random perturba,ons and can’t explain the success of m-SAM

PAC-Bayesian generaliza9on bound and SAM?

🤔



So why can 𝒎-sharpness be helpful in 𝒎-SAM?

Maybe some straighForward explana6ons?

• Hypothesis 1: with a lower 𝑚, the ascent step of SAM 
more accurately maximizes the inner max.
→ Some evidence towards this hypothesis, but using 
>1 step for the inner max doesn’t help.

• Hypothesis 2: the regulariza:on effect of BatchNorm
used with smaller batches (aka Ghost BatchNorm)
→ Also no, we can see the generaliza,on 
improvements from 𝑚-SAM also with other 
normaliza,on schemes
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Our approach: understanding 𝒎-SAM on simple models
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We will use diagonal linear networks 𝒇 𝒙 = ⟨𝒙, 𝒖⊙ 𝒗⟩ for sparse regression that 
shows different generaliza,on depending on the ini,aliza,on scale and SGD noise

𝟏-SAM for 𝒇(𝒙) generalizes significantly beOer than ERM and 𝒏-SAM!

We are also able to capture it theore6cally: 1-SAM promotes sparsity in 
terms of the linear predictor 𝑢 ⊙ 𝑣 (and much more than 𝑛-SAM) ⬇



A detour: implicit bias in machine learning

• So what do we mean by the implicit bias? Say, L⋆ is an op,mal predictor on the 
training set, then algorithm A induces an implicit bias 𝜙(𝛽) if
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• [Woodworth et al., 2020]: for diagonal linear neural networks (overparam. regression 
with squared loss) solved with gradient flow, the ini,aliza,on scale 𝛼 ma]ers 

𝛽" = argmin𝜙(𝛽)
𝛽 𝑠. 𝑡. 𝐿 𝛽 = 𝐿⋆

• For example, for gradient descent on linear models: 𝜙 𝛽 = ||𝛽 − 𝛽)||*

• Understanding deep learning requires rethinking generaliza,on (ICLR’17): the key 
regulariza,on effect for overparametrized networks must come from the opt. algorithm

𝑓+,-(𝑥) = ⟨𝑥, 𝑢 ⊙ 𝑣⟩ (u./, v./) = argmin𝜙.(𝑢 ⊙ 𝑣)
𝑢, 𝑣 ∈ ℝ" 𝑠. 𝑡. 𝑋(𝑢 ⊙ 𝑣) = 𝑦

https://arxiv.org/abs/1611.03530


Diagonal linear networks: role of the ini9aliza9on scale

• The role of 𝛼 in the hyperbolic entropy: interpola,on between ℓ𝟏 and ℓ𝟐 norms

𝜙. 𝛽 = 𝛼G
;<=

>

𝑞
𝛽;
𝛼*

where q z = 2 − 4 + 𝑧* + 𝑧 ⋅ arcsinh(𝑧/2)
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Diagonal linear networks: effect of SAM
• Our result for 1-SAM and 𝑛-SAM: both decrease the effec6ve parameter 𝜶 in the 

hyperbolic entropy 𝝓𝜶(𝜷) but n-SAM reduces it significantly more
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• This implicit bias of SAM can explain its generaliza6on benefits for this problem

• So 1-SAM promotes sparsity of the linear predictor 𝑢 ⊙ 𝑣 (and much more than 𝑛-SAM)



Op9miza9on theory: general convergence results for SAM

• We analyze the convergence of the stochas,c version of 𝑚-SAM (𝑚 = |𝐼@|):
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• Note: the same batch 𝐼@ is used for the inner and outer updates (as in SAM)

• However, we don’t consider ℓ* gradient normaliza,on (i.e., | ∇𝐿 |*) but we show 
empirically that it’s not important for generaliza,on

• Why interes6ng: 
• we need to sufficiently minimize the loss
• the implicit bias result requires convergence to a global min
• and in prac,ce we converge to nearly zero training loss even with SAM (!)



General convergence results for SAM
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Assump6ons Convergence theorem

Some people had the intui,on that SAM helps generaliza,on 
because it prevents convergence → not true

Now let’s switch gears and explore the effect of SAM empirically



𝒎-SAM for 2-layer ReLU networks: sparsity bias
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For non-linear networks, we can observe some interes,ng proper,es empirically

Using SAM for 2-layer ReLU networks on simple 1D regression also 
leads to a sparsifying effect but in terms of the ReLU kinks



What happens for deep networks: convergence and generaliza9on

• Both ERM and SAM converge to nearly zero training loss: 0.0012 for ERM vs 0.0009 
for SAM => our convergence result is relevant

• However, the SAM model has much beOer generaliza6on performance: 3.76% vs 
5.03% test error 13

SeXng:
ResNet-18 on 
CIFAR-10 with data 
augmenta,on



What happens for deep networks: normaliza9on in SAM
• Our convergence result holds for unnormalized SAM, i.e. we assumed no scaling 

of the SAM updates by | ∇𝐿 |* (as this may prevent convergence in some cases)
• But empirically normaliza,on isn’t important for improving generaliza,on
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At which stage of training the effect of SAM is important? (part I)

Here we switch from SAM to ERM and from ERM to SAM at different stages of training

→ SAM has the most important effect in the second half of the training



At which stage of training the effect of SAM is important? (part II)
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And it’s not so mysterious: exactly the same phenomena are observed also 
for diagonal linear networks where we can explain the dynamics quite well!

A curious property of SAM: if we finetune an ERM model with SAM 
on the same dataset, we get a significant generaliza6on improvement 

ResNet-18 on CIFAR-10 ResNet-34 on CIFAR-100

+ minima of ERM and ERM→SAM are linearly connected



What happens with SAM on mislabelled data?

Convergence of SAM to global minima can also have a nega6ve impact
→ e.g., SAM overfits similarly to ERM when trained on mislabelled data
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ResNet-18 on CIFAR-10 ResNet-34 on CIFAR-100

This also suggests that the beneficial effect of SAM is observed not only 
close to a minimum but also along the whole op6miza6on trajectory



Future direc9ons

1. What is the implicit bias of SAM for non-linear neural networks in terms of the 
learned func,on?

2. Why does sharpness s,ll makes sense despite its obvious flaws (Sharp Minima Can 
Generalize For Deep Nets (ICML’17))?

3. Why is SAM so beneficial for vision transformers: When Vision Transformers 
Outperform ResNets without Pre-training or Strong Data Augmenta,ons (ICLR’22)?

4. More in-depth explora,on of SAM in the noisy label seLng: why does it work?
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Before we conclude, a few more words about 1.

https://arxiv.org/abs/1703.04933
https://arxiv.org/abs/2106.01548


A follow-up on the sparsity observa9on
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This observa,on is quite curious. Can we understand it be]er? 
Can the same effect be achieved with standard SGD?



New paper: SGD with large step sizes learns sparse features
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A typical training dynamics for a ResNet-18 on CIFAR-10

Se&ng: no momentum, no data augmenta9on.

1. Why does the training loss stabilizes?
2. What kind of hidden dynamics is happening in this phase?
3. Is it related to sparsity of the predictor?



New paper: SGD with large step sizes learns sparse features
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• Our picture: SGD noise drives the iterates to a sparse solu,on which we observe on many 
models (from diagonal linear networks to ResNets on CIFAR-100)

• It’s important that we don’t converge too early and keep benefiXng from the noise
• Rela6on to sharpness: the slow noisy dynamics can be seen as minimiza,on of some 

sharpness-related criterion (but unclear which exactly; rank of the NTK feature matrix 
seems to be a good proxy)



Thanks for your aTen9on!

Happy to answer your ques9ons and chat more :)
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Paper: h$ps://arxiv.org/abs/2206.06232
Code: h$ps://github.com/tml-epfl/understanding-sam

https://arxiv.org/abs/2206.06232
https://github.com/tml-epfl/understanding-sam

