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1. m-sharpness matters in m-SAM

m-SAM: min Z max Z&(w +6)
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2. The implicit bias of 1-SAM vs. n-

SAM and ERM can be well under-

stood for diagonal linear networks

Test Loss

Diagonal linear network

o

100 -------- .X

= RM

«sn-SAM
1-SAM

10 :

10° 102 104 108

Number of iterations

. Simple models can be
surprisingly predictive
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3. m-SAM has some interesting

effects: running ERM — SAM
gradually improves generalization
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Background: Sharpness-Aware Minimization

e Sharpness-Aware Minimization (SAM) [Foret et
al., ICLR’21]:

Wiy = Z Ve ( Z Vi;(wy))

zEI jEI
where p; can optionally include 1/]|V||,

* Foret etal., ICLR’21 motivate SAM by
minimization of sharpne55°

min max —ZE (w + 6)

weRIwl [|6]|,<p TV

 SAM consistently improves generalization in
the state-of-the-art settings (!) and has only
2x computational overhead

Visual description of the SAM algorithm
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Which components of SAM are crucial?

n

n-SAM: min max li(w+9) —  m-SAM: min Z max li(w + 90)
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Worst-case weight perturbations, with a small m (aka m-sharpness) are key!
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Note: state-of-the-art setting with weight decay, BatchNorm, and data augmentation



Sharp minima vs. flat minima?

2D subspace around a
SAM minimum

2D subspace around an
ERM minimum

Source of the loss surfaces: Sharpness-Aware Minimization for Efficiently Improving Generalization, ICLR’21

Importance of m-sharpness = the common intuition about the benefits of
converging to flat minima of the training loss landscape is unlikely to explain SAM!
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PAC-Bayesian generalization bound and SAM?

A.1 PAC BAYESIAN GENERALIZATION BOUND \’; o

iy
Theorem 2. For any p > 0 and any distribution 9, with probability 1 — & over the choice of the
training set S ~ 9,

Below, we state a generalization bound based on sharpness.

2
klog (1 + s (1 + 1"%’”) ) +4log 2 + O(1)

n—1

4)

Lo < max L w+e +
2(w) lellazp S \

where n = |S|, k is the number of parameters and we assumed Lo(w) < E., nr(0,p)[Lo(w + €)].

Source: Sharpness-Aware Minimization for Efficiently Improving Generalization, ICLR’21

Importance of m-sharpness = PAC-Bayes generalization is derived for
random perturbations and can’t explain the success of m-SAM



So why can m-sharpness be helpful in m-SAM?

Maybe some straightforward explanations?

Hypothesis 1: with a lower m, the ascent step of SAM
more accurately maximizes the inner makx.

— Some evidence towards this hypothesis, but using
>1 step for the inner max doesn’t help.

Hypothesis 2: the regularization effect of BatchNorm
used with smaller batches (aka Ghost BatchNorm)

— Also no, we can see the generalization
improvements from m-SAM also with other
normalization schemes
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Our approach: understanding m-SAM on simple models

We will use diagonal linear networks f(x) = (x,u (O v) for sparse regression that
shows different generalization depending on the initialization scale and SGD noise

1-SAM for f(x) generalizes significantly better than ERM and n-SAM!
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We are also able to capture it theoretically: 1-SAM promotes sparsity in
terms of the linear predictor u () v (and much more than n-SAM)



A detour: implicit bias in machine learning

Understanding deep learning requires rethinking generalization (ICLR’17): the key
regularization effect for overparametrized networks must come from the opt. algorithm

So what do we mean by the implicit bias? Say, L* is an optimal predictor on the
training set, then algorithm A induces an implicit bias ¢ (f) if

B4 = argmin ¢(f)
B s.t. L(B) =L

For example, for gradient descent on linear models: ¢(B8) = ||B — Boll>

[Woodworth et al., 2020]: for diagonal linear neural networks (overparam. regression
with squared loss) solved with gradient flow, the initialization scale @ matters

fup(x) = (x,u O v) (ug,vg) = argmin ¢ (u © v)
u,vER? s.t. X(u@Qv)=y


https://arxiv.org/abs/1611.03530

Diagonal linear networks: role of the initialization scale

* Therole of a in the hyperbolic entropy: interpolation between £ and £, norms
d

Pa(B) = “z q (%) where q(z) =2 — 4 + z? + z - arcsinh(z/2)
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Diagonal linear networks: effect of SAM

* QOurresult for 1-SAM and n-SAM: both decrease the effective parameter « in the
hyperbolic entropy ¢, () but n-SAM reduces it significantly more

Theorem 1 (Informal). Assuming global convergence, the
solutions selected by the full-batch versions of the 1-SAM
and n-SAM algorithms taken with infinitesimally small step
sizes and initialized at wy = w_ = a € R%, solve the
optimization problem (6) with effective parameters:

_ 2 . 2
apsam = a@e PAITOWT) o ciy = a@e PArstOKT)

where A sam, Dn-saym € ]Ri for which typically:

| Az-sam||1 zd/ L(w(s))ds and
0

d o0
1A nsaulls ~ = / L(w(s))ds.
n Jo

* So 1-SAM promotes sparsity of the linear predictor u (O v (and much more than n-SAM)

* This implicit bias of SAM can explain its generalization benefits for this problem



Optimization theory: general convergence results for SAM

We analyze the convergence of the stochastic version of m-SAM (m = |I;|):

W41 — Wt — G—Zl Z ng (’wt + G—; Z ij(wt))

1€ 1y j€ly
Note: the same batch I; is used for the inner and outer updates (as in SAM)

However, we don’t consider £, gradient normalization (i.e., ||VL||,) but we show
empirically that it’s not important for generalization

Why interesting:
* we need to sufficiently minimize the loss
* the implicit bias result requires convergence to a global min
e and in practice we converge to nearly zero training loss even with SAM (!)



General convergence results for SAM

Assumptions Convergence theorem

(A1) (Bounded variance). There exists 0 > 0 s.t. Theorem 2. Assume (Al) and (A2) for the iterates (4).
E[||V£;(w) — VL(w)||2] < o2 for all i ~ U([1,n]) Then for any number of iterations T' > 0, batch size b,

and w € R4, and step sizes 7y = f%ﬁ and py = Tl;/%, we have:
(A2) (Individual B-smoothness). There exists 5 > 0 s.t. = ) 48 852
IVei(w) — VEi(v)|| < Bllw — || for all w,v € R? T D IVL@w,)|?| < ﬁ(L(wo) — L) + Wi
' t=0
andi € [1,n].

(A3) (Polyak-Lojasiewicz). There exists u > 0 st v Gddiion, under (A3), wih siep sizes % =

- 8t+4 = d — .
sIIVL(w)|1? > p(L(w) — L) for all w,v € R%. ming 7 eine 25 8 pe = /' R/B

3/82 L _L* 22/3 -
E[L(wr)] — L. < ( ig”% ) ;ﬂbaT'

Some people had the intuition that SAM helps generalization
because it prevents convergence — not true

Now let’s switch gears and explore the effect of SAM empirically
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m-SAM for 2-layer ReLU networks: sparsity bias

For non-linear networks, we can observe some interesting properties empirically

Prediction

Input

Prediction

SAM

Input

Using SAM for 2-layer ReLU networks on simple 1D regression also
leads to a sparsifying effect but in terms of the ReLU kinks
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What happens for deep networks: convergence and generalization
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 Both ERM and SAM converge to nearly zero training loss: 0.0012 for ERM vs 0.0009
for SAM => our convergence result is relevant

* However, the SAM model has much better generalization performance: 3.76% vs
5.03% test error 13



What happens for deep networks: normalization in SAM

* Our convergence result holds for unnormalized SAM, i.e. we assumed no scaling
of the SAM updates by ||VL||, (as this may prevent convergence in some cases)
* But empirically normalization isn’t important for improving generalization
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At which stage of training the effect of SAM is important? (part I)

Here we switch from SAM to ERM and from ERM to SAM at different stages of training

ResNet-18 on CIFAR-10 ResNet-34 on CIFAR-100
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— SAM has the most important effect in the second half of the training
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At which stage of training the effect of SAM is important? (part Il)

A curious property of SAM: if we finetune an ERM model with SAM
on the same dataset, we get a significant generalization improvement

ResNet-18 on CIFAR-10 ResNet-34 on CIFAR-100
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+ minima of ERM and ERM—SAM are linearly connected

And it’s not so mysterious: exactly the same phenomena are observed also
for diagonal linear networks where we can explain the dynamics quite well!
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What happens with SAM on mislabelled data?

Convergence of SAM to global minima can also have a negative impact
— e.g., SAM overfits similarly to ERM when trained on mislabelled data

ResNet-18 on CIFAR-10 ResNet-34 on CIFAR-100
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This also suggests that the beneficial effect of SAM is observed not only
close to a minimum but also along the whole optimization trajectory

O(yo IS ST ICETTET
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Future directions

What is the implicit bias of SAM for non-linear neural networks in terms of the
learned function?

Why does sharpness still makes sense despite its obvious flaws (Sharp Minima Can
Generalize For Deep Nets (ICML'17))?

Why is SAM so beneficial for vision transformers: When Vision Transformers
Outperform ResNets without Pre-training or Strong Data Augmentations (ICLR'22)?

More in-depth exploration of SAM in the noisy label setting: why does it work?

Before we conclude, a few more words about 1.

18


https://arxiv.org/abs/1703.04933
https://arxiv.org/abs/2106.01548

A follow-up on the sparsity observation

SAM

Prediction
Prediction

Input

This observation is quite curious. Can we understand it better?
Can the same effect be achieved with standard SGD?
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New paper: SGD with large step sizes learns sparse features

A typical training dynamics for a ResNet-18 on CIFAR-10

I
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Setting: no momentum, no data augmentation.

1. Why does the training loss stabilizes?
2. What kind of hidden dynamics is happening in this phase?
3. Isitrelated to sparsity of the predictor?
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New paper: SGD with large step sizes learns sparse features

Training loss over a 2D subspace
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—— SGD, 7=0.0002, decay at 2% iterations —— SGD, =0.0002, decay at 50% iterations

Our picture: SGD noise drives the iterates to a sparse solution which we observe on many
models (from diagonal linear networks to ResNets on CIFAR-100)

It’s important that we don’t converge too early and keep benefitting from the noise
Relation to sharpness: the slow noisy dynamics can be seen as minimization of some
sharpness-related criterion (but unclear which exactly; rank of the NTK feature matrix
seems to be a good proxy)



Thanks for your attention!

Happy to answer your questions and chat more :)

Paper: https://arxiv.org/abs/2206.06232
Code: https://github.com/tml-epfl/understanding-sam
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