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Let’s start from a well-known observa<on

Se#ng: ResNet-18 on CIFAR-10, standard mini-batch SGD, no data augmenta@on

Longer schedules of large step size SGD lead to better generalization

1. Why does the training loss stabilizes?
2. What kind of hidden dynamics is happening in this phase?
3. How is it related to sparsity of the predictor?

This raises mul>ple ques>ons:

loss 
stabiliza*on

better
generalization



⇒ we can try to understand the phenomenon theore>cally by 
leveraging prior works on this toy model

Is this a phenomenon inherent to deep networks? No!
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The same observations can be seen even on the simplest diagonal linear networks 
ℎ 𝑥 = ⟨𝑥, 𝑢 ⊙ 𝑣⟩ for a sparse regression problem
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How can the training loss stabilize around some level set?

General picture:

Setting: a 2-D slice of the 60-D training 
loss surface of a diagonal linear network

• In addi-on, it’s apparent that SGD slowly 
moves to a certain direc-on. Can we beFer 
understand that?

• We formalize it in the paper with a 
proposi-on that describes how this can 
occur provably for a 1D diagonal linear net

• Then, due to the noise, SGD cannot enter 
the narrow valley and keep oscilla-ng 
(⇒ no convergence but also no divergence)

• Initially, the training loss decreases



• Observa>on: the noise intensity of SGD is propor-onal to the training loss 
⇒ when the loss stabilizes, we can assume constant noise intensity
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Modelling SGD with a Stochas<c Differen<al Equa<on (Part I)

• This SDE can be seen as the effective slow dynamics (due to the gradient + the noise 
term) that drives the 𝜃! while they bounce rapidly due to the noise (fast dynamics)

Constant-noise SDE:

constant noise intensity 
due to loss stabiliza0on

the Jacobian of the network 
[∇!ℎ! 𝑥" #]"$%& ∈ ℝ&×(

step size 

Brownian mo0on in ℝ&,
i.e., Gaussian noise

• We check empirically that this SDE fully agrees with SGD in terms of the generaliza-on 
improvements and other key metrics (we’ll see these experiments later)

• Thus, we can model the large step size SGD phase with the following constant-noise SDE:
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Modelling SGD with a Stochas<c Differen<al Equa<on (Part II)

Constant-noise SDE:

• Prior works: for diagonal linear networks, Pillaud-Vivien et al. (COLT 2022) proved the 
sparsity of the solu>on using a similar SDE derived for label noise SGD

• Our work: we conjecture that for arbitrary deep networks, a similar sparsifying effect
is taking place for standard SGD with large step sizes (no label noise needed)

• Thus, the SDE resembles the geometric Brownian mo>on (Oksendal, 2013): 

• Observa>on: for the Brownian mo-on d𝐵! ∈ ℝ": 𝜙#( 𝑥$
%𝑑𝐵! = ||𝜙#((𝑥$)||&𝑑𝑊!

where 𝑑𝑊! ∈ ℝ is a 1D Brownian mo-on (basic property of the Gaussian distribu>on)

• Thus, we expect the SDE to induce a similar shrinkage effect for each mul-plica-ve fac-
tor to 𝑑𝑊!, i.e., ||𝜙#( 𝑥$ ||& with strength propor-onal to the loss stabiliza-on level 𝛿

𝑑𝜃! = 𝜇𝜃!𝑑𝑡 + 𝛿𝜃!𝑑𝑊! → closed-form solu-on 𝜃! = 𝜃'exp((𝜇 − 𝛿&/2)𝑡 + 𝜎 𝑊!)

https://proceedings.mlr.press/v178/vivien22a.html
https://link.springer.com/book/10.1007/978-3-642-14394-6


We empirically track two quan>>es related to the Jacobian 𝜙#(𝑋) ∈ ℝ"×):

1. Rank of the Jacobian that reflects
• how many columns collapsed completely to zero (e.g., if ReLU = 0 for all 𝑥$)
• how many columns are linearly dependent on others (e.g., if two ReLUs

implement the same func-on, up to a constant rescaling)

2. “Feature sparsity coefficient”: the average number of dis-nct (we count highly-
correlated neurons as one), non-zero ac-va-ons
• formally: *"∑$+*

" *
,
∑-+*, 𝟏. /) * 0' where 𝑔 𝑥$ ∈ ℝ, is the feature vector at 

some layer where we merge beforehand highly correlated neurons
• this serves as a cheap proxy of the rank that scales to deep networks
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No<ons of sparsity for arbitrary architectures

Constant-noise SDE:
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Sparse feature learning for diagonal linear networks

• The last two plots clearly show that sparsity is progressively achieved in the large 
step size phase

• Note: for this task, sparsity is desirable because the ground truth vector 𝑤∗ was 
selected to be sparse 

• If there is no alignment between the ground truth and implicit bias, we don’t expect 
to see improvements in generaliza-on!

(the first two plots are the same as before) (new) (new)
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Sparse feature learning for a simple one-layer ReLU network

Here, however, the nice interpola-on between the points
is due to the implicit regulariza>on effect of large step sizes

Illustration: a classical textbook picture about overfitting
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Validity of the SDE modeling

A simple one-layer ReLU network: sparsity metrics
Sparse feature learning

!
"
∑#$!" !

%
∑&$!% 𝟏' (! " )* for 

deduplicated features 𝑔(𝑥#)
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Dynamics of individual neurons in 2D
• How do the weight vectors corresponding to neurons move depending on the step size?

• With small step sizes, the neurons barely move! i.e., the network fits the data with 
effec>vely fixed random features → not desirable 

• Sparse feature learning occurs only for large step sizes

Se#ng: input dimension 𝒅 = 𝟐, teacher with 3 neurons 𝒘𝟏
⋆ , 𝒘𝟐

⋆ , 𝒘𝟑
⋆ , student with 20 neurons
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Sparse feature learning for deep networks (part I)

Main observa>ons:
• Plot 1: the training loss stabilizes
• Plot 2: the test error no-ceably depends on the length of the schedule
• Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4 out of 4 blocks 

in total) is minimized during the large step size phase

!
"
∑#$!" !

%
∑&$!% 𝟏' (! " )* for 

deduplicated features 𝑔(𝑥#)
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Sparse feature learning for deep networks (part 2)
!
"
∑#$!" !

%
∑&$!% 𝟏' (! " )* for 

deduplicated features 𝑔(𝑥#)

Main observa>ons:
• Plot 1: the training loss stabilizes
• Plot 2: the test error no-ceably depends on the length of the schedule
• Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4) is minimized 

during the large step size phase
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Sparse feature learning for deep networks (part 3)
!
"
∑#$!" !

%
∑&$!% 𝟏' (! " )* for 

deduplicated features 𝑔(𝑥#)

Main observa>ons:
• Plot 1: the training loss stabilizes
• Plot 2: the test error no-ceably depends on the length of the schedule
• Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4) is minimized 

during the large step size phase



Conclusions and takeaways
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• Our picture: SGD noise drives the iterates to a sparse solu-on which we observe 
on many models (from diagonal linear networks to ResNets on CIFAR-100)

• Sparse features are very o`en (but surely not always) beneficial for generaliza-on

• We can get them for free via the SGD dynamics if we don’t converge too early

• Is stochas-city necessary in general? Surely not, the same dynamics is likely to be 
achieved via different means but with SGD we get this effect “for free” unlike, 
e.g., for gradient/Jacobian regularizers

Happy to answer your ques>ons and chat more :)

Thanks for your attention!


