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Training loss
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Let’s start from a well-known observation

Longer schedules of large step size SGD lead to better generalization

Setting: ResNet-18 on CIFAR-10, standard mini-batch SGD, no data augmentation
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This raises multiple questions:
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1. Why does the training loss stabilizes?
2. What kind of hidden dynamics is happening in this phase?
3. How is it related to sparsity of the predictor?



Is this a phenomenon inherent to deep networks? No!

The same observations can be seen even on the simplest diagonal linear networks
h(x) = (x,u O v) for a sparse regression problem
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= we can try to understand the phenomenon theoretically by
leveraging prior works on this toy model



How can the training loss stabilize around some level set?
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General picture:

——— (Gradient flow

—— SGD * |Initially, the training loss decreases

 Then, due to the noise, SGD cannot enter
the narrow valley and keep oscillating
(= no convergence but also no divergence)

L=

 We formalize it in the paper with a

—4
= proposition that describes how this can
occur provably for a 1D diagonal linear net
o In addition, it’s apparent that SGD slowly
0

moves to a certain direction. Can we better
understand that?

Setting: a 2-D slice of the 60-D training
loss surface of a diagonal linear network



Modelling SGD with a Stochastic Differential Equation (Part I)

* Observation: the noise intensity of SGD is proportional to the training loss
= when the loss stabilizes, we can assume constant noise intensity

* Thus, we can model the large step size SGD phase with the following constant-noise SDE:

constant noise intensity
step size due to loss stabilization

N ¥
Constant-noise SDE: df; = —VyL(0;)dt + \/1nd ¢, (X )TdBt «— Brownian motion in R”,

i.e., Gaussian noise

the Jacobian of the network
[Vohe(x) ]z, € R™P

* We check empirically that this SDE fully agrees with SGD in terms of the generalization
improvements and other key metrics (we’ll see these experiments later)

* This SDE can be seen as the effective slow dynamics (due to the gradient + the noise
term) that drives the 8; while they bounce rapidly due to the noise (fast dynamics)



Modelling SGD with a Stochastic Differential Equation (Part Il)
Constant-noise SDE:  df; = —VyL(6;)dt + \/nd ¢g,(X) T dB;

Prior works: for diagonal linear networks, Pillaud-Vivien et al. (COLT 2022) proved the
sparsity of the solution using a similar SDE derived for label noise SGD

Our work: we conjecture that for arbitrary deep networks, a similar sparsifying effect
is taking place for standard SGD with large step sizes (no label noise needed)

* Observation: for the Brownian motion dB; € R™: ¢y, (x;) "dB; = ||¢g, (x;)||2dW;
where dW; € R is a 1D Brownian motion (basic property of the Gaussian distribution)

* Thus, the SDE resembles the geometric Brownian motion (Oksendal, 2013):

Ao, = ub.dt + §6,dW, - closed-form solution 8, = Opexp((u — 5%/2)t + o W,)

* Thus, we expect the SDE to induce a similar shrinkage effect for each multiplicative fac-
tor to dW;, i.e., ||pg, (x;)||2 with strength proportional to the loss stabilization level §


https://proceedings.mlr.press/v178/vivien22a.html
https://link.springer.com/book/10.1007/978-3-642-14394-6

Notions of sparsity for arbitrary architectures
Constant-noise SDE:  df; = —VL(6;)dt + \/nd ¢g,(X) ' dB;

We empirically track two quantities related to the Jacobian ¢g(X) € R™*P:

1. Rank of the Jacobian that reflects
* how many columns collapsed completely to zero (e.g., if ReLU = 0 for all x;)
* how many columns are linearly dependent on others (e.g., if two RelLUs
implement the same function, up to a constant rescaling)

2. “Feature sparsity coefficient”: the average number of distinct (we count highly-
correlated neurons as one), non-zero activations

1 1 .
« formally: ;2?:1;12}”:1 15(x; >0 Where g(x;) € R™ is the feature vector at

some layer where we merge beforehand highly correlated neurons
e this serves as a cheap proxy of the rank that scales to deep networks



Sparse feature learning for diagonal linear networks

| (the first two plots are the same as before) (new) (new)
10 200 i i 200 ' i
10° ‘ ' '
10- P ; ;
o 150
% ~ % 10~ >< 160 :C 5
LS Ke) 140 | IS
3= + 10 = - o 10
®© 10~ %) =2 - 3
= = g 100 =
10~ 0
10~ S
—_,I_—'_—
10~ 60 :C.-.ﬂ 0
10-5 '
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Iteration lteration Iteration Iteration
SGD n=0.25 SGD 7=0.28, decay at 10% iterations —— SGD 7=0.28, decay at 30% iterations —— SGD 7=0.28, decay at 50% iterations

* The last two plots clearly show that sparsity is progressively achieved in the large
step size phase

* Note: for this task, sparsity is desirable because the ground truth vector w* was
selected to be sparse

* If thereis no alignment between the ground truth and implicit bias, we don’t expect
to see improvements in generalization!



Sparse feature learning for a simple one-layer ReLU network

lllustration: a classical textbook picture about overfitting
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Here, however, the nice interpolation between the points
is due to the implicit regularization effect of large step sizes



A simple one-layer ReLU network: sparsity m

Sparse feature learning

etrics
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Dynamics of individual neurons in 2D

* How do the weight vectors corresponding to neurons move depending on the step size?

Setting: input dimension d = 2, teacher with 3 neurons w}, w3, w3, student with 20 neurons
SGD, n=0.13 SGD, n=0.46, decay at 50% iterations

w; randomly initialized w; randomly initialized
\ w; after training | e w; after training

* With small step sizes, the neurons barely movel i.e., the network fits the data with
effectively fixed random features — not desirable
» Sparse feature learning occurs only for large step sizes



Sparse feature learning for deep networks (part 1)
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Main observations:

* Plot 1: the training loss stabilizes

* Plot 2: the test error noticeably depends on the length of the schedule

* Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4 out of 4 blocks
in total) is minimized during the large step size phase



Sparse feature learning for deep networks (part 2)
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DenseNet-100 on CIFAR-100, state-of-the-art setting
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Main observations:
* Plot 1: the training loss stabilizes
* Plot 2: the test error noticeably depends on the length of the schedule

* Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4) is minimized
during the large step size phase



Training loss

Sparse feature learning for deep networks (part 3)
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Main observations:
* Plot 1: the training loss stabilizes
* Plot 2: the test error noticeably depends on the length of the schedule

* Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4) is minimized
during the large step size phase



Conclusions and takeaways

Our picture: SGD noise drives the iterates to a sparse solution which we observe
on many models (from diagonal linear networks to ResNets on CIFAR-100)

Sparse features are very often (but surely not always) beneficial for generalization

We can get them for free via the SGD dynamics if we don’t converge too early
|s stochasticity necessary in general? Surely not, the same dynamics is likely to be

achieved via different means but with SGD we get this effect “for free” unlike,
e.g., for gradient/Jacobian regularizers

Thanks for your attention!

Happy to answer your questions and chat more :)



