SGD with large step sizes learns sparse features (ICML 2023)
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Main theme: we know that SGD has a strong implicit regularization
effect, but what does it imply for the features learned by the model?
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Big picture: understanding the generalization puzzle
in overparametrized deep learning

Underparametrized DL: training loss / perplexity already correlates very well with
generalization! In most cases: we just need to minimize the training loss

Overparametrized DL: different global minima can generalize very differently, so it
matters which one we pick (via the opt. algorithm, initialization, regularization, etc)
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“Bad Global Minima Exist and SGD Can Reach Them”, NeurlPS’19
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Let’s start from a known observation

Longer schedules of SGD with large step sizes lead to better generalization

Setting: ResNet-18 on CIFAR-10, standard mini-batch SGD, no data augmentation
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This raises multiple questions:
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1. Why does the training loss stabilizes?
2. What kind of hidden dynamics is happening in this phase?
3. How is it related to sparsity of the predictor?



LLOSS LANDSCAPES ARE ALL YOU NEED:
NETWORK GENERALIZATION CAN BE EXPLAINED
WITHOUT THE IMPLICIT BIAS OF GRADIENT DE-
SCENT

A short remark about the paper presented here in June
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ABSTRACT

It is commonly believed that the implicit regularization of optimizers is needed
for neural networks to generalize in the overparameterized regime. In this paper,
we observe experimentally that this implicit regularization behavior is generic,
1.e. it does not depend strongly on the choice of optimizer. We demonstrate this
by training neural networks using several gradient-free optimizers, which do not
benefit from properties that are often attributed to gradient-based optimizers. This
includes a guess-and-check optimizer that generates uniformly random parame-
ter vectors until finding one that happens to achieve perfect train accuracy, and
a zeroth-order Pattern Search optimizer that uses no gradient computations. In
the low sample and few-shot regimes, where zeroth order optimizers are most
computationally tractable, we find that these non-gradient optimizers achieve test
accuracy comparable to SGD. The code to reproduce results can be found at
https://github.com/Ping-C/optimizer.
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Quote: “we observe experimentally that this
implicit regularization behavior [of
optimizers] is generic, i.e. it does not depend
strongly on the choice of optimizer”

Depends on what is “strongly”! There is still a
consistent difference between SGD with small
vs. large step sizes and we want to study that
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Is this a phenomenon inherent to deep networks? No!

The same observations can be seen even on the simplest diagonal linear networks
h(x) = (x,u O v) for a sparse regression problem
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= we can try to understand the phenomenon theoretically by
leveraging prior works on this toy model



How can the training loss stabilize around some level set?
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General picture:

——— (Gradient flow

—— SGD * Initially, the training loss decreases

 Then, due to the noise, SGD cannot enter
the narrow valley and keeps oscillating
(= no convergence but also no divergence)

L=

 We formalize it in the paper with a

—4
= proposition that describes how this can
occur provably for a 1D diagonal linear net
o In addition, it’s apparent that SGD slowly
0

moves to a certain direction. Can we better
understand that?

Setting: a 2-D slice of the 60-D training
loss surface of a diagonal linear network



Modelling SGD with a Stochastic Differential Equation (Part I)

* Observation: the noise intensity of SGD is proportional to the training loss
= when the loss stabilizes, we can assume constant noise intensity

* Thus, we can model the large step size SGD phase with the following constant-noise SDE:

constant noise intensity
step size due to loss stabilization

N ¥
Constant-noise SDE: df; = —VL(6;)dt + \/1nd ¢, (X )TdBt «— Brownian motion in R",

i.e., Gaussian noise

the Jacobian of the network
[Vohe(x) ]z, € R™P

* We check empirically that this SDE fully agrees with SGD in terms of the generalization
improvements and other key metrics (we’ll see these experiments later)

* This SDE can be seen as the effective slow dynamics (due to the gradient + the noise
term) that drives the 8; while they bounce rapidly due to the noise (fast dynamics)



Modelling SGD with a Stochastic Differential Equation (Part 1)
Constant-noise SDE:  df; = —VyL(6;)dt + /16 ¢g,(X) T dB;

Prior works: for diagonal linear networks, Pillaud-Vivien et al. (COLT 2022) proved the
sparsity of the solution using a similar SDE derived for label noise SGD

Our work: we conjecture that for arbitrary deep networks, a similar sparsifying effect
is taking place for standard SGD with large step sizes (no label noise needed)

* Observation: for the Brownian motion dB; € R™: ¢g, (x;) "dB; = ||¢g, (x;)||2dW;
where dW; € R is a 1D Brownian motion (basic property of the Gaussian distribution)

* Thus, the SDE resembles the geometric Brownian motion (Oksendal, 2013):

Ao, = ub.dt + §6,dW, - closed-form solution 8, = Byexp((u — 5%/2)t + W)

* Thus, we expect the SDE to induce a similar shrinkage effect for each multiplicative fac-
tor to dW;, i.e., ||pg, (x;)||2 with strength proportional to the loss stabilization level §


https://proceedings.mlr.press/v178/vivien22a.html
https://link.springer.com/book/10.1007/978-3-642-14394-6

Notions of sparsity for arbitrary architectures
Constant-noise SDE:  df; = —V,L(6;)dt + +/nd ¢y, (X) ' dB;

We empirically track two quantities related to the Jacobian ¢g(X) € R™*P:

1. Rank of the Jacobian that reflects
* how many columns collapsed completely to zero (e.g., if ReLU = 0 for all x;)
* how many columns are linearly dependent on others (e.g., if two RelLUs
implement the same function, up to a constant rescaling)

2. “Feature sparsity coefficient”: the average number of distinct (we count highly-
correlated neurons as one), non-zero activations

1 1 .
« formally: ;2?:1;12}”:1 15(x; >0 Where g(x;) € R™ is the feature vector at

some layer where we merge beforehand highly correlated neurons
e this serves as a cheap proxy of the rank that scales to deep networks



Sparse feature learning for diagonal linear networks
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* The last two plots clearly show that sparsity is progressively achieved in the large
step size phase

* Note: for this task, sparsity is desirable because the ground truth vector w* was
selected to be sparse

* If there is no alignment between the ground truth and implicit bias, we don’t expect
to see improvements in generalization!



Sparse feature learning for a simple one-layer RelLU network

lllustration: a classical textbook picture about overfitting
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Here, however, the nice interpolation between the points
is due to the implicit regularization effect of large step sizes



A simple one-layer ReLU network: sparsity mleztrjzcs
i=17, 221 1g(e), > o for

Sparse feature learning

n
deduplicated features g(x;)
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Dynamics of individual neurons in 2D

* How do the weight vectors corresponding to neurons move depending on the step size?

Setting: input dimension d = 2, teacher with 3 neurons w{, w;, w3, student with 20 neurons
SGD, n=0.13 SGD, n=0.46, decay at 50% iterations

w; randomly initialized w; randomly initialized
\ w; after training 1 e w; after training

* With small step sizes, the neurons barely movel i.e., the network fits the data with
effectively fixed random features — not desirable
* Sparse feature learning occurs only for large step sizes



Sparse feature learning for deep networks (part 1)

1 1
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deduplicated features g(x;)

DenseNet-100 on CIFAR-100, no explicit regularization
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Main observations:

* Plot 1: the training loss stabilizes

* Plot 2: the test error noticeably depends on the length of the schedule

* Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4 out of 4 blocks
in total) is minimized during the large step size phase



Sparse feature learning for deep networks (part 2)

1 1
L5 T Tyt o for
deduplicated features g(x;)

DenseNet-100 on CIFAR-100, state-of-the-art setting
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Main observations:
* Plot 1: the training loss stabilizes
* Plot 2: the test error noticeably depends on the length of the schedule

* Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4) is minimized
during the large step size phase



Training loss

Sparse feature learning for deep networks (part 3)
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DenseNet-100 on Tiny ImagelNet, no explicit regularizati(A)n/ deduplicated features g (x;)
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Main observations:
* Plot 1: the training loss stabilizes
* Plot 2: the test error noticeably depends on the length of the schedule

* Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4) is minimized
during the large step size phase



Conclusions and takeaways

Our picture: SGD noise drives the iterates to a sparse solution which we observe
on many models (from diagonal linear networks to DenseNets on Tiny ImageNet)

Sparse features are likely to be often (but surely not always) beneficial for
generalization on natural data

We can learn them via the SGD dynamics if we don’t converge too early

The same training dynamics is likely to be achieved via different means but with
SGD we get this effect “for free” unlike, e.g., for gradient/Jacobian regularizers

May be of interest: recent work “Stochastic Collapse: How Gradient Noise Attracts
SGD Dynamics Towards Simpler Subnetworks” (June 2023, arXiv) with similar high-
level claims but a bit different perspective

Thanks for your attention!


https://arxiv.org/abs/2306.04251
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