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Main theme: we know that SGD has a strong implicit regulariza8on
effect, but what does it imply for the features learned by the model?



Big picture: understanding the generaliza3on puzzle 
in overparametrized deep learning
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vs.

“Bad Global Minima Exist and SGD Can Reach Them”, NeurIPS’19

• Underparametrized DL: training loss / perplexity already correlates very well with 
generaliza7on! In most cases: we just need to minimize the training loss

• Overparametrized DL: different global minima can generalize very differently, so it 
ma@ers which one we pick (via the opt. algorithm, ini7aliza7on, regulariza7on, etc)
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Let’s start from a known observation

Se#ng: ResNet-18 on CIFAR-10, standard mini-batch SGD, no data augmentaEon

Longer schedules of SGD with large step sizes lead to beAer generaliza8on

1. Why does the training loss stabilizes? 
2. What kind of hidden dynamics is happening in this phase?
3. How is it related to sparsity of the predictor? 

This raises multiple questions:

loss 
stabiliza*on

be-er
generaliza*on



A short remark about the paper presented here in June
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• Quote: “we observe experimentally that this 
implicit regulariza8on behavior [of 
op8mizers] is generic, i.e. it does not depend 
strongly on the choice of op1mizer”

• Depends on what is “strongly”! There is s;ll a 
consistent difference between SGD with small 
vs. large step sizes and we want to study that

35% vs. 12% 
test error



⇒ we can try to understand the phenomenon theoretically by 
leveraging prior works on this toy model

Is this a phenomenon inherent to deep networks? No!
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The same observa;ons can be seen even on the simplest diagonal linear networks 
ℎ 𝑥 = ⟨𝑥, 𝑢 ⊙ 𝑣⟩ for a sparse regression problem
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How can the training loss stabilize around some level set?

General picture:

Se#ng: a 2-D slice of the 60-D training 
loss surface of a diagonal linear network

• In addition, it’s apparent that SGD slowly 
moves to a certain direction. Can we better 
understand that?

• We formalize it in the paper with a 
proposition that describes how this can 
occur provably for a 1D diagonal linear net

• Then, due to the noise, SGD cannot enter 
the narrow valley and keeps oscilla;ng 
(⇒ no convergence but also no divergence)

• Ini;ally, the training loss decreases



• Observation: the noise intensity of SGD is proportional to the training loss  
⇒ when the loss stabilizes, we can assume constant noise intensity
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Modelling SGD with a Stochas3c Differen3al Equa3on (Part I)

• This SDE can be seen as the effec;ve slow dynamics (due to the gradient + the noise 
term) that drives the 𝜃! while they bounce rapidly due to the noise (fast dynamics)

Constant-noise SDE:

constant noise intensity 
due to loss stabilization

the Jacobian of the network 
[∇!ℎ! 𝑥" #]"$%& ∈ ℝ&×(

step size 

Brownian motion in ℝ&,
i.e., Gaussian noise

• We check empirically that this SDE fully agrees with SGD in terms of the generalization 
improvements and other key metrics (we’ll see these experiments later)

• Thus, we can model the large step size SGD phase with the following constant-noise SDE:
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Modelling SGD with a Stochastic Differential Equation (Part II)

Constant-noise SDE:

• Prior works: for diagonal linear networks, Pillaud-Vivien et al. (COLT 2022) proved the 
sparsity of the soluLon using a similar SDE derived for label noise SGD

• Our work: we conjecture that for arbitrary deep networks, a similar sparsifying effect 
is taking place for standard SGD with large step sizes (no label noise needed)

• Thus, the SDE resembles the geometric Brownian motion (Oksendal, 2013): 

• Observation: for the Brownian motion d𝐵! ∈ ℝ": 𝜙#( 𝑥$
%𝑑𝐵! = ||𝜙#((𝑥$)||&𝑑𝑊! 

where 𝑑𝑊! ∈ ℝ is a 1D Brownian motion (basic property of the Gaussian distribution)

• Thus, we expect the SDE to induce a similar shrinkage effect for each mulPplicaPve fac-
tor to 𝑑𝑊!, i.e., ||𝜙#( 𝑥$ ||& with strength proporPonal to the loss stabilizaPon level 𝛿

𝑑𝜃! = 𝜇𝜃!𝑑𝑡 + 𝛿𝜃!𝑑𝑊! → closed-form solution 𝜃! = 𝜃'exp((𝜇 − 𝛿&/2)𝑡 + 𝛿𝑊!)

https://proceedings.mlr.press/v178/vivien22a.html
https://link.springer.com/book/10.1007/978-3-642-14394-6


We empirically track two quanLLes related to the Jacobian 𝜙#(𝑋) ∈ ℝ"×):

1. Rank of the Jacobian that reflects
• how many columns collapsed completely to zero (e.g., if ReLU = 0 for all 𝑥$)
• how many columns are linearly dependent on others (e.g., if two ReLUs

implement the same funcPon, up to a constant rescaling)

2. “Feature sparsity coefficient”: the average number of disPnct (we count highly-
correlated neurons as one), non-zero acPvaPons
• formally: *"∑$+*

" *
,
∑-+*, 𝟏. /) * 0' where 𝑔 𝑥$ ∈ ℝ, is the feature vector at 

some layer where we merge beforehand highly correlated neurons
• this serves as a cheap proxy of the rank that scales to deep networks
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Notions of sparsity for arbitrary architectures

Constant-noise SDE:
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Sparse feature learning for diagonal linear networks

• The last two plots clearly show that sparsity is progressively achieved in the large 
step size phase

• Note: for this task, sparsity is desirable because the ground truth vector 𝑤∗ was 
selected to be sparse 

• If there is no alignment between the ground truth and implicit bias, we don’t expect 
to see improvements in generalization!

(the first two plots are the same as before) (new) (new)
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Sparse feature learning for a simple one-layer ReLU network

Here, however, the nice interpolaPon between the points
is due to the implicit regularizaLon effect of large step sizes

IllustraLon: a classical textbook picture about overfi[ng
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Validity of the SDE modeling

A simple one-layer ReLU network: sparsity metrics
Sparse feature learning

!
"
∑#$!" !

%
∑&$!% 𝟏' (! " )* for 

deduplicated features 𝑔(𝑥#)
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Dynamics of individual neurons in 2D
• How do the weight vectors corresponding to neurons move depending on the step size?

• With small step sizes, the neurons barely move! i.e., the network fits the data with 
effectively fixed random features → not desirable 

• Sparse feature learning occurs only for large step sizes

Setting: input dimension 𝑑 = 2, teacher with 3 neurons 𝑤!⋆, 𝑤#⋆, 𝑤$⋆, student with 20 neurons
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Sparse feature learning for deep networks (part I)

Main observations:
• Plot 1: the training loss stabilizes
• Plot 2: the test error noticeably depends on the length of the schedule
• Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4 out of 4 blocks 

in total) is minimized during the large step size phase

!
"
∑#$!" !

%
∑&$!% 𝟏' (! " )* for 

deduplicated features 𝑔(𝑥#)
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Sparse feature learning for deep networks (part 2)
!
"
∑#$!" !

%
∑&$!% 𝟏' (! " )* for 

deduplicated features 𝑔(𝑥#)

Main observations:
• Plot 1: the training loss stabilizes
• Plot 2: the test error noticeably depends on the length of the schedule
• Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4) is minimized 

during the large step size phase
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Sparse feature learning for deep networks (part 3)
!
"
∑#$!" !

%
∑&$!% 𝟏' (! " )* for 

deduplicated features 𝑔(𝑥#)

Main observations:
• Plot 1: the training loss stabilizes
• Plot 2: the test error noticeably depends on the length of the schedule
• Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4) is minimized 

during the large step size phase



Conclusions and takeaways
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• Our picture: SGD noise drives the iterates to a sparse solution which we observe 
on many models (from diagonal linear networks to DenseNets on Tiny ImageNet)

• Sparse features are likely to be often (but surely not always) beneficial for 
generalization on natural data

• We can learn them via the SGD dynamics if we don’t converge too early

• The same training dynamics is likely to be achieved via different means but with 
SGD we get this effect “for free” unlike, e.g., for gradient/Jacobian regularizers

• May be of interest: recent work “Stochastic Collapse: How Gradient Noise Attracts 
SGD Dynamics Towards Simpler Subnetworks” (June 2023, arXiv) with similar high-
level claims but a bit different perspective

Thanks for your attention!

https://arxiv.org/abs/2306.04251
https://arxiv.org/abs/2306.04251

