SGD with large step sizes learns sparse features (ICML 2023)

o v T:—‘ e T
Maksym Andriushchenko Aditya Varre Loucas Pillaud-Vivien Nicolas Flammarion

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Main theme: we know that SGD has a strong implicit regularization
effect, but what does it imply for the features learned by the model?

23 August 2023
ELLIS Reading Group on Mathematics of Deep Learning

=PrL ICML | 2023

Big picture: understanding the generalization puzzle
in overparametrized deep learning

Underparametrized DL: training loss / perplexity already correlates very well with
generalization! In most cases: we just need to minimize the training loss

Overparametrized DL: different global minima can generalize very differently, so it
matters which one we pick (via the opt. algorithm, initialization, regularization, etc)

‘‘‘‘‘‘

..........
- -~

VS.

% .
WreTS e P e
L. °>

“Bad Global Minima Exist and SGD Can Reach Them”, NeurlPS’19

Training loss

100

=
o
s

=
o
o

1073

Let’s start from a known observation

Longer schedules of SGD with large step sizes lead to better generalization

Setting: ResNet-18 on CIFAR-10, standard mini-batch SGD, no data augmentation

n=0.007

n=1.5, decay at 10% epochs 40%
—— n=1.5, decay at 30% epochs
—— n=1.5, decay at 50% epochs 35%

30%

\ loss

stabilization

25%

Test error

20%

15%

0 20 40 60 80 100
Epoch

This raises multiple questions:

|
q n=0.007
n=1.5, decay at 10% epochs
l ‘ —— n=1.5, decay at 30% epochs
\ l b —— n=1.5, decay at 50% epochs
| ‘ |le better
generalization
20 40 60 80 100
Epoch

1. Why does the training loss stabilizes?
2. What kind of hidden dynamics is happening in this phase?
3. How is it related to sparsity of the predictor?

LLOSS LANDSCAPES ARE ALL YOU NEED:
NETWORK GENERALIZATION CAN BE EXPLAINED
WITHOUT THE IMPLICIT BIAS OF GRADIENT DE-
SCENT

A short remark about the paper presented here in June

Ping-yeh Chiang', Renkun Ni', David Yu Miller'*, Arpit Bansal', Jonas Geiping',

Micah Goldblum? & Tom Goldstein'

'University of Maryland, College Park ,
{pchiang, rn9zm, dym, bansal0l, jgeiping, tomg}@umd.edu
2New York University , goldblum@nyu.edu
3Max Planck Institute for Software Systems

ABSTRACT

It is commonly believed that the implicit regularization of optimizers is needed
for neural networks to generalize in the overparameterized regime. In this paper,
we observe experimentally that this implicit regularization behavior is generic,
1.e. it does not depend strongly on the choice of optimizer. We demonstrate this
by training neural networks using several gradient-free optimizers, which do not
benefit from properties that are often attributed to gradient-based optimizers. This
includes a guess-and-check optimizer that generates uniformly random parame-
ter vectors until finding one that happens to achieve perfect train accuracy, and
a zeroth-order Pattern Search optimizer that uses no gradient computations. In
the low sample and few-shot regimes, where zeroth order optimizers are most
computationally tractable, we find that these non-gradient optimizers achieve test
accuracy comparable to SGD. The code to reproduce results can be found at
https://github.com/Ping-C/optimizer.

NEURAL

Quote: “we observe experimentally that this
implicit regularization behavior [of
optimizers] is generic, i.e. it does not depend
strongly on the choice of optimizer”

Depends on what is “strongly”! There is still a
consistent difference between SGD with small
vs. large step sizes and we want to study that

40% ‘
\‘ ﬂ
|l
35% \l |
S . l n=0.007
Gt) 200 \ ——— n=1.5, decay at 10% epochs
' ‘ —— n=1.5, decay at 30% epochs
0 25% 1\ ' ! AR Sasb 35% vs. 12%
@ ‘ l —— n=1.5, decay at 50% epochs
« “] | test error
o I Iy
15% B N 3 ’/////
A e T
0 20 40 60 80 100

Epoch

Is this a phenomenon inherent to deep networks? No!

The same observations can be seen even on the simplest diagonal linear networks
h(x) = (x,u O v) for a sparse regression problem

10°
10°
1071
wn -1
n g 10
O 107)
- +3 1072
'@ 103 0
-t)
I_ I_ A T A
1073
10~
{|'\% 3 “‘
104
10°
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
lteration lteration
SGD n=0.25 SGD 7=0.28, decay at 10% iterations —— SGD 1=0.28, decay at 30% iterations —— SGD 5=0.28, decay at 50% iterations

= we can try to understand the phenomenon theoretically by
leveraging prior works on this toy model

How can the training loss stabilize around some level set?

[
)
o

General picture:

——— (Gradient flow

—— SGD * Initially, the training loss decreases

 Then, due to the noise, SGD cannot enter
the narrow valley and keeps oscillating
(= no convergence but also no divergence)

L=

 We formalize it in the paper with a

—4
= proposition that describes how this can
occur provably for a 1D diagonal linear net
o In addition, it’s apparent that SGD slowly
0

moves to a certain direction. Can we better
understand that?

Setting: a 2-D slice of the 60-D training
loss surface of a diagonal linear network

Modelling SGD with a Stochastic Differential Equation (Part I)

* Observation: the noise intensity of SGD is proportional to the training loss
= when the loss stabilizes, we can assume constant noise intensity

* Thus, we can model the large step size SGD phase with the following constant-noise SDE:

constant noise intensity
step size due to loss stabilization

N ¥
Constant-noise SDE: df; = —VL(6;)dt + \/1nd ¢, (X)TdBt «— Brownian motion in R",

i.e., Gaussian noise

the Jacobian of the network
[Vohe(x)]z, € R™P

* We check empirically that this SDE fully agrees with SGD in terms of the generalization
improvements and other key metrics (we’ll see these experiments later)

* This SDE can be seen as the effective slow dynamics (due to the gradient + the noise
term) that drives the 8; while they bounce rapidly due to the noise (fast dynamics)

Modelling SGD with a Stochastic Differential Equation (Part 1)
Constant-noise SDE: df; = —VyL(6;)dt + /16 ¢g,(X) T dB;

Prior works: for diagonal linear networks, Pillaud-Vivien et al. (COLT 2022) proved the
sparsity of the solution using a similar SDE derived for label noise SGD

Our work: we conjecture that for arbitrary deep networks, a similar sparsifying effect
is taking place for standard SGD with large step sizes (no label noise needed)

* Observation: for the Brownian motion dB; € R™: ¢g, (x;) "dB; = ||¢g, (x;)||2dW;
where dW; € R is a 1D Brownian motion (basic property of the Gaussian distribution)

* Thus, the SDE resembles the geometric Brownian motion (Oksendal, 2013):

Ao, = ub.dt + §6,dW, - closed-form solution 8, = Byexp((u — 5%/2)t + W)

* Thus, we expect the SDE to induce a similar shrinkage effect for each multiplicative fac-
tor to dW;, i.e., ||pg, (x;)||2 with strength proportional to the loss stabilization level §

https://proceedings.mlr.press/v178/vivien22a.html
https://link.springer.com/book/10.1007/978-3-642-14394-6

Notions of sparsity for arbitrary architectures
Constant-noise SDE: df; = —V,L(6;)dt + +/nd ¢y, (X) ' dB;

We empirically track two quantities related to the Jacobian ¢g(X) € R™*P:

1. Rank of the Jacobian that reflects
* how many columns collapsed completely to zero (e.g., if ReLU = 0 for all x;)
* how many columns are linearly dependent on others (e.g., if two RelLUs
implement the same function, up to a constant rescaling)

2. “Feature sparsity coefficient”: the average number of distinct (we count highly-
correlated neurons as one), non-zero activations

1 1 .
« formally: ;2?:1;12}”:1 15(x; >0 Where g(x;) € R™ is the feature vector at

some layer where we merge beforehand highly correlated neurons
e this serves as a cheap proxy of the rank that scales to deep networks

Sparse feature learning for diagonal linear networks

| (the first two plots are the same as before) (new) (new)
10 200 i i 200 ' i
10° ‘ ' '
10- P ; ;
o 150
% ~ % 10~ >< 160 :C 5
LS Ke) 140 | IS
3= + 10 = - o 10
®© 10~ %) =2 - 3
= = g 100 =
10~ 0
10~ S
—_,I_—'_—
10~ 60 :C.-.ﬂ 0
10-5 '
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Iteration lteration Iteration Iteration
SGD n=0.25 SGD 7=0.28, decay at 10% iterations —— SGD 7=0.28, decay at 30% iterations —— SGD 7=0.28, decay at 50% iterations

* The last two plots clearly show that sparsity is progressively achieved in the large
step size phase

* Note: for this task, sparsity is desirable because the ground truth vector w* was
selected to be sparse

* If there is no alignment between the ground truth and implicit bias, we don’t expect
to see improvements in generalization!

Sparse feature learning for a simple one-layer RelLU network

lllustration: a classical textbook picture about overfitting

R L

\
2 1\ /
I\ ;e 5
\
,’ \ J / \
> | o o] f \
) \ \
0 J Ny vy / \
[} /
, ; ¢
-1 I \
I
I
®
— |
—1.0 —-0.5 0.0 0.5 1.0 1.5
SGD, n=0.0002, decay at 2% iterations =~ —— SGD, n=0.0002, decay at 50% iterations

Here, however, the nice interpolation between the points
is due to the implicit regularization effect of large step sizes

A simple one-layer ReLU network: sparsity mleztrjzcs
i=17, 221 1g(e), > o for

Sparse feature learning

n
deduplicated features g(x;)

N

' . 5 100)
10 A \ e G
2 .'[\1 1[[v A n !/ 3 8
’ 1 i1 \ .{f ; ! .ljl,, u \ —~ S —— (&) 25%
100 AN " “\ \ / \’I V) ~—~~ 80 —
4 bl 4 A J \ VWA
7)) 1 8 vy VA I/ 1 <
o) ! Y J N % \ = W 20%
— 107 I Vs) 1 =
e \ - 60 Q
= > ! K‘ \) /Jf “'1 — o
© 0 ! Y Now 7 Vo v 15%
l: 10-2 ; M L] i S ()
I ¥ ; ¢S =
: -1 el in 2 10%
1073 i 1 § , @D
4 | [V
. 1 : 20 ! —
10-4 —2 - " ’ 5%
0 5000 10000 15000 20000 25000 30000 ~10 -05 00 0.5 1.0 15 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
lteration X Iteration lteration
—— SGD, decay at 2% iterations —— SGD, decay at 50% iterations
lidity of th deli
Validity of the SDE modeling
1
| s
w0l 90 i o« 25%
\ | L)
2 \ 7 80 o]
J g o .
10° [|’ P 20%
7)) [} L] 70 i >
g 1 I = f P< =
— ! / \ { > 60 2 .
c > | b J - 8. 15%
= 0 { \ 4 50
L i \ / <~ »
= { ¥ S w L 10
3 5 10%
~1 s =
10- |] 30 o \
1 ()] ”
3 $] 20 L 5%
104 . =
0 5000 10000 15000 20000 25000 30000 10 —-05 00 05 1.0 15 0 50000 100000 150000 200000 250000 300000 0 5000 10000 15000 20000 25000 30000
Iteration X Iteration Iteration
—— SDE discretization with 7 and §; from the SGD run

Gradient flow discretization

—— SGD, decay at 50% iterations

11

Dynamics of individual neurons in 2D

* How do the weight vectors corresponding to neurons move depending on the step size?

Setting: input dimension d = 2, teacher with 3 neurons w{, w;, w3, student with 20 neurons
SGD, n=0.13 SGD, n=0.46, decay at 50% iterations

w; randomly initialized w; randomly initialized
\ w; after training 1 e w; after training

* With small step sizes, the neurons barely movel i.e., the network fits the data with
effectively fixed random features — not desirable
* Sparse feature learning occurs only for large step sizes

Sparse feature learning for deep networks (part 1)

1 1
;Z?:l poy 271:1 1g(xi)j > o for
deduplicated features g(x;)

DenseNet-100 on CIFAR-100, no explicit regularization

10! m <
100% ¢ ~
9 50% 9
L, 10 90% § 48% < 50%
8 5 80% t‘ 45% Hq_)
— 107 = S S 400 .
o o 70% o 40% !
c o > 43% g
= - 2 2
c 10 N 60% L a0% v
£ O © © 30%
© = Q [eX
= 50% " 38% @
1073 v g
40% 3 35% A 3 20% [o —
10~ O 33% ki
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch Epoch Epoch
n=0.07 n=0.75, warmup, decay at 10% —— n=0.75, warmup, decay at 30% —— n=0.75, warmup, decay at 50%

Main observations:

* Plot 1: the training loss stabilizes

* Plot 2: the test error noticeably depends on the length of the schedule

* Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4 out of 4 blocks
in total) is minimized during the large step size phase

Sparse feature learning for deep networks (part 2)

1 1
L5 T Tyt o for
deduplicated features g(x;)

DenseNet-100 on CIFAR-100, state-of-the-art setting

10! m <

100% ~ 52% ~ 60%
3 3
90% 5 50% o

n 10° - - 50%
0 o 80% Yy y
L 48% Q
2 2 ox - 3

(e o 40%
g’ 10-1) > 45% >
= = 60% = =

= i 5 43 5 30%

© 50% =

l: 1072 = %40/ 3

40% g Q500

35 38% 5 20% /-”’"_
1073 30% © @V—\;—\""’\F o
L L
0 25 50 75 100 125 150 175 200 0 25 50 1D 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch Epoch Epoch
n=20.01 n=20.1, warmup, decay at 10% —— n=0.1, warmup, decay at 30% —— n=0.1, warmup, decay at 50%

Main observations:
* Plot 1: the training loss stabilizes
* Plot 2: the test error noticeably depends on the length of the schedule

* Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4) is minimized
during the large step size phase

Training loss

Sparse feature learning for deep networks (part 3)

1 1
;Z?ﬂ ;1271:1 1g(xl-)j > for
DenseNet-100 on Tiny ImagelNet, no explicit regularizati(A)n/ deduplicated features g (x;)

10! . m <
100% ﬁ 50% f‘)
o © 50%
100 90% = =
S "g) 45% ‘tg 20%
= 80% S S
10-1 v > >
= 70% 5 40% £ 300
n N = LT |
|9 Q Q
1072 60% 0 Y 20%
) 35% J]
50% % Ni_g % . /’_’——'
10-3 8 8 10%
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch Epoch
n=20.07 n=0.4, warmup, decay at 10% —— n=0.4, warmup, decay at 30% —— n=0.4, warmup, decay at 50%

Main observations:
* Plot 1: the training loss stabilizes
* Plot 2: the test error noticeably depends on the length of the schedule

* Plots 3 & 4: the feature sparsity coefficient at top layers (blocks 3 and 4) is minimized
during the large step size phase

Conclusions and takeaways

Our picture: SGD noise drives the iterates to a sparse solution which we observe
on many models (from diagonal linear networks to DenseNets on Tiny ImageNet)

Sparse features are likely to be often (but surely not always) beneficial for
generalization on natural data

We can learn them via the SGD dynamics if we don’t converge too early

The same training dynamics is likely to be achieved via different means but with
SGD we get this effect “for free” unlike, e.g., for gradient/Jacobian regularizers

May be of interest: recent work “Stochastic Collapse: How Gradient Noise Attracts
SGD Dynamics Towards Simpler Subnetworks” (June 2023, arXiv) with similar high-
level claims but a bit different perspective

Thanks for your attention!

https://arxiv.org/abs/2306.04251
https://arxiv.org/abs/2306.04251

