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Big picture: understanding the generalization puzzle
in overparametrized deep learning

Underparametrized DL: training loss / perplexity already correlates very well
with generalization! In most cases: we just need to minimize the training loss

Overparametrized DL: different global minima can generalize very differently
e.g., see “Bad Global Minima Exist and SGD Can Reach Them” (Liu et al. NeurIPS’19)

What measure computed on the training set can distinguish the minima
which generalize well?

Can we figure this measure and optimize it for training? (+ use it as a tool to
understand the generalization puzzle)



Prior work: finding such measures is actually not easy!
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Flat vs. sharp minima: intuition

* Popular intuition: the test loss should be close to the training loss for a flat minimum

Training Function

L

' Testing Function

can be under
a distribution shift

Flat Minimum Sharp Minimum

Source: “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima” (Keskar et al., ICLR’17)

 Renewed interest due to works on explicit (Sharpness-Aware Minimization, ICLR 2021)
and implicit sharpness minimization (Edge of Stability regime of GD, ICLR 2021)



Flat vs. sharp minima: theory

 There are generalization bounds based on sharpness

| w—w0]|2 m
. ——2 +log(">) + 10
]EuNJV(U,U2I) [L(fw+u)] < EuNJV(u,ozl) [L(fw+u)] + \/ : m — 1

perturbed population loss perturbed training loss term that depends on the scale of the predictor

* But they can be often of limited use as illustrated well by Jiang et al., ICLR’20

overall T . -
ve dim ~0 951 T = rank correlation coefficient:
# params —0.175 7(t,s) = ﬁ Zsign(ti —t;)sign(s; — s;)
sharpness 0.282 (M-1) =
pacbayes 0.064

* While there exist networks for which these bounds can be quite tight (Lotfi et al.,
NeurlPS’22), this doesn’t apply to all possible networks = these quantities are not
necessarily meaningful to explain the generalization puzzle
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B e st Contribution of our work
sharpness definitions

\ The specific question we want to answer:
can adaptive sharpness explain generalization in modern practical settings?

* Average-case adaptive sharpness: S7, (w) 2E  sop, Ls(w+6)— Ls(w)
8~N(0,p°diag(|w|?))

(w) = Esp max Lg('w + 5) — Ls(’w)

* Worst-case adaptive sharpness:  S” -
[60]w[~Hp<p

max

 What we mean by modern practical settings:
» datasets beyond toyish CIFAR-10 / SVHN,
e vision transformers,
* fine-tuning (totally underexplored),
e out-of-distribution generalization.

We want to have a definite answer about whether sharpness is the right quantity!



Short note 1: familiar particular cases of adaptive sharpness

When the radius at which we measure sharpness p — 0, adaptive sharpness becomes

Stug(w, [w]) = S-tr(V2Ls(w) © wllw|T) + O(p?)

If in addition w is a critical point, then:

2
Staz (W, [0]) = £ Amax (V2 Ls(w) © [w]jw]T) + O(p%)

Thus, we recover familiar and well-studied quantities based on the Hessian (if we
ignore the |w||w|" term)



Short note 2: sensitivity to the scale of the classifier

Sharpness is strange for classification: scaling Linear model that achieves 100% train accuracy

. . . [o 0.20
the logits by a = 0 will preserve the classifier —e— Adaptive sharpness, p=0.5

. . Adaptive sharpness, p =0.25
but can arbitrarily change sharpness —_— B o o e

Adaptive sharpness is no exception: you can

Sharpness
o
—
o
0\‘
B

keep optimizing the cross-entropy loss and / !
this will drive adaptive sharpness to 0 0.05 / \
This is well illustrated on linear models: W' « aw g0  ewessszisre” S A
102 10°% 10+ 10° 10! 102 10°
Possible solution: logit normalization Weight scaling coefficient
fuw()

53
é ; where fm)g = = f'w (33
V/I( > i1 (fw(®)i — favg)? =

We will benchmark all sharpness definitions with and without logit normalization



Setting #1: ViTs trained from scratch on ImageNet

With logit normalization
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Figure 2: ViT-B/16 trained from scratch on ImageNet-1k. We show for 56 models from Steiner et al.
(2021) the test error on ImageNet or its variants (distribution shifts) vs worst-case £, sharpness with (top) or
without (bottom) normalization at p = 0.002. The color indicates whether the networks were trained with stochastic

depth/

dropout.

The correlation (1) is either close to 0 or even slightly negative

(-0.42 on ImageNet for adaptive sharpness without logit normalization)!



Setting #2: ViTs fine-tuned from CLIP on ImageNet
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Figure 3: Fine-tuning CLIP ViT-B/32 on ImageNet-1k. We show for 72 models from Wortsman et al. (2022a)
the test error on ImageNet or its variants (distribution shifts) vs worst-case £~ sharpness with (top) or without
(bottom) normalization at p = 0.002. Darker color indicates larger learning rate used for fine-tuning.

The correlation is again either close to 0 or negative, especially on

distribution shifts like ImageNet-R and ImageNet-A (as low as -0.51 and -0.58!)
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Figure 4: Fine-tuning BERT on MNLI. We show for 50 models the error on MNLI or out-of-distribution domains

Setting #3: BERT models fine-tuned on MNLI

With logit normalization
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indicates higher test error on MNLI.

This case is famous since OOD generalization (see HANS lexical) can be very different

However, sharpness is not helpful to distinguish which solutions will generalize better for OOD
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Setting #4: ResNets and ViTs trained from scratch on CIFAR-10

Maybe sharpness has to be measured close to a min? here we select only models w/ <1% train error

ResNets-18 with logit normalization
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Positive correlation is present but only within subgroups of models trained with the same

augmentations

Globally, however, correlation is either close to 0 or negative (as much as -0.68!)
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Learning rate
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So what does sharpness really capture?

Overall, we observe that sharpness doesn't correlate well with generalization but rather

with some training parameters like the learning rate

Training ResNet from scratch
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However, the learning rate can positively or negatively correlate with generalization

depending on the setup

Roughly speaking: large LRs are good for pretraining (at least for CNNs), small LRs are
good for fine-tuning. But sharpness doesn’t capture that!

12



Is sharpness the right quantity in the first place? Theoretical insights

* Simple model: sparse regression with a diagonal linear network g :=u ©O v
_ |diag(v ©®v) diag(u ®©v)

.: 2 _ Ty — J. 2 =
L(w) = || X(u©wv) -yl forLw)=0andX'X=1I= V“L(w) diag(u ®v) diag(u ® u)

* For appropriate adaptive sharpness with
¢i =+/|vil/|luj| for1 <i<dandc; =+|ul/|vi| ford +1<i<2d

we get for p — 0 that different sharpness definitions capture totally different quantities:

d d
1 1
Stog(w,€) = 5 uflvil/luil + 5 vfluil/|vil = [|Bll1,  Shae(w, €) = max Juillvs] = [8]leo

avg 1<:<d

* However, we know apriori that for sparse regression only ||B]|; is the right quantity

* Thus, only a very specific sharpness definition for this given problem can explain
generalization



Test loss

What can go wrong with the sharpness definition?

Empirical validation: a bunch of diagonal linear nets trained with different LR and init

7 =0.803 7 =0.794 7 = 0.668 7 = —0.532
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) () @ @
L 8 e ® 0.20 L % e 9 0.20 @ o ¢ %5 0.20 L e —o @
oy °° " Gog ® |® " e ®* | ¢ n o o 0°% "o
& A 38 015 @ o fBa 0 (CN Qa0 0 e_® 0 .o o
'{'(» 2 'dP S &b ~le 00y QBT ey g W, o©°
Al‘" |§ 0.10 ‘L‘P };3 0.10 P F‘i I§ _— " \.?i‘ﬂm 2 e
: (. "oy .
..._(‘F‘ 0.05 ““ 0.05 -"‘ o e3:° | 0.05 e > oo
o9 P Ea R
T T T T T T T T 0.00 T T T T T T T T 0.00 T T T T T T T T T AL T T T T .I
3925 350 375 4.00 425 450 475  5.00 325 350 375 400 425 450 475 ~5-00 3.25 3.50 3.75 4.00 4.25 450 475 5.00 525 1.1 1.2 1.3 1.4 1.5
lu® |1 Adaptive average-case sharpness (% Tr(V?)) Standard average-case sharpness (% Tr(V?)) Adaptive worst-case sharpness (Anaz(V?))

Our analysis suggests that sharpness can be the right quantity

However, choosing the right definition of sharpness requires a precise understanding
of the data and how it interacts with the architecture

This is obviously challenging beyond toy models!
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Lots of additional experiments in the appendix

* We tried many-many sharpness
definitions (£, vs. £, norms, avg- vs.
worst-case, with/without normalization,
adaptive vs. non-adaptive sharpness)

* 50+ pages of plots in the appendix
* None of the sharpness definitions that

we considered correlates well enough
with generalization!

Appendix

The appendix is organized as follows:

Sec. A: additional related work.

Sec. B: omitted derivations for sharpness when p — 0, first for the general case and then specifically for
diagonal linear networks.

Sec. C: additional figures about ViTs from Steiner et al. (2021) trained with different hyperparameter
settings on ImageNet-1k. We observe that different sharpness variants are not predictive of the
performance on ImageNet and the OOD datasets, typically only separating models by stochastic depth /
dropout, but not ranking them according to generalization, and often even yielding a negative correlation
with OOD test error.

Sec. D: figures about ViTs from Steiner et al. (2021) pre-trained on ImageNet-21k and then fine-tuned
on ImageNet-1k. The observations are very similar to those for training on ImageNet-1k from scratch:
sharpness variants are not predictive of the performance on ImageNet, and they often lead to a negative
correlation with OOD test error.

Sec. E: figures for combined analysis of ViTs from Steiner et al. (2021) both with and without
ImageNet-21k pre-training. We find the better-generalizing models pretrained on ImageNet-21k to have
significantly higher worst-case sharpness and roughly equal or higher logit-normalized average-case
adaptive sharpness, underlining that the models’ generalization properties resulting from different
pretraining datasets are not captured.

Sec. F: additional details and figures for CLIP models fine-tuned on ImageNet. We observe that
sharpness variants are not predictive of the performance on ImageNet and ImageNet-V2. Moreover,
there is in most cases a negative correlation with test error in presence of distribution shifts which is
likely to be related to the influence that the learning rate has on sharpness.

Sec. G: additional details and figures for BERT models fine-tuned on MNLI. We find that all sharpness
variants we consider are not predictive of the generalization performance of the model, and in some
cases there is rather a weak negative correlation between sharpness and test error on out-of-distribution
tasks from HANS.

Sec. H: additional details and ablation studies for CIFAR-10 models. We analyze the role of data used
to evaluate sharpness, the role of the number of iterations in APGD, the role of m in m-sharpness, and
the influence of different sharpness definitions and radii on correlation with generalization. Overall,
we conclude that none of the considered sharpness definitions or radii correlates positively with
generalization nor that low sharpness implies good performance of the model.
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Outlook

Is it even possible to have a single measure that would be causally related to
generalization?

| think it’s highly unlikely and too good to be true (as the DLN example illustrates: this
depends a lot on the data distribution)

But: there are some creative proposals like SGD-based disagreement on unlabeled
data which correlates well with generalization (Assessing Generalization of SGD via Disagreement, ICLR’22)

However, for this, we need at least a small amount of unseen unlabeled data... then
why not assuming that we have a small amount of unseen labeled data?

Regarding the success of sharpness-aware minimization: it can be useful to get a locally
flatter solution but at the same time there may exist another solution with much
better generalization but the same flatness.

Thanks for your attention! Happy to discuss more :)



