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Big picture: understanding the generaliza3on puzzle
in overparametrized deep learning

1

• Different global minima can generalize very differently
e.g., see “Bad Global Minima Exist and SGD Can Reach Them” (Liu et al. NeurIPS’19)

• What measure computed on the training set can dis7nguish the minima 
which generalize well?

• Can we figure this measure and op7mize it for training? (+ use it as a tool 
to understand the generaliza7on puzzle)



Prior work: finding such measures is actually not easy!
• Main ref: “Fantas&c Generaliza&on 

Measures and Where to Find Them” 
(Jiang et al., ICLR’20) which highlights 
sharpness as a promising measure

• What can we expect from such measure:
1. Causal rela1on: smaller measure ⇒

beEer generalizaGon (universally)
2. Correla1on: smaller measure ⇒

beEer generalizaGon (but there may 
exist counterexamples)

3. Sufficient but not necessary: small 
measure ⇒ good generalizaGon; 
large measure ⇒ can’t say anything
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• We will focus on 2. and 3. showing they don’t hold for sharpness (this will also rule out 1.)



Flat vs. sharp minima: intui3on
• Popular intui%on: the test loss will be close to the training loss for a flat minimum
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Source: “On Large-Batch Training for Deep Learning: Generaliza8on Gap and Sharp Minima” (Keskar et al., ICLR’17)

• Keskar et al., ICLR’17: small-batch SGD converges to flat minima unlike large-batch SGD
• Sharpness also received renewed interest with the Edge of Stability phenomenon and 

the empirical success of Sharpness-Aware Minimiza%on

(can be OOD)

https://arxiv.org/abs/1609.04836


Flat vs. sharp minima: theory
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• But they can be oIen of limited use as illustrated well by Jiang et al., ICLR’20

• There are generalizaOon bounds based on sharpness

• While there exist networks for which these bounds can be quite tight (Lotfi et al., 
NeurIPS’22), this doesn’t apply to all possible networks ⇒ these quantities are not 
necessarily meaningful to solve the generalization puzzle

perturbed popula?on loss perturbed training loss term that depends on the scale of the predictor

τ = rank correlaRon coefficient:

https://arxiv.org/abs/1912.02178
https://arxiv.org/abs/2211.13609
https://arxiv.org/abs/2211.13609


Problems with the standard sharpness defini3ons

• Main problem (Dinh et al., ICML’17): lack of invariance to layerwise rescaling:
!
"
𝑽 ⋅ 𝜎 𝛽𝑾𝒙 = 𝐕 ⋅ 𝜎 𝑾𝒙 (for a homogeneous 𝜎)  ⇒ same network but with 

different sharpness!

• However, this is pre[y easy to fix: adap%ve sharpness is invariant to such rescaling 
and is reported to correlate be[er with generalizaOon
“ASAM: Adap8ve Sharpness-Aware Minimiza8on for Scale-Invariant Learning of Deep Neural Networks” (Kwon et al., ICML’21)

5

Keskar et al., ICLR’17
+ many other papers

𝑇𝑟(∇#$ 𝐿(𝑓#))

Keskar et al., ICLR’17,
Damian et al., NeurIPS’21

+ many other papers

𝜆%&' (∇#$ 𝐿(𝑓#))

Keskar et al., ICLR’17,
+ many other papers



Adap3ve sharpness: defini3on

• Average-case sharpness:
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• Choosing 𝒄 ≔ |𝒘| leads to adaptive 
sharpness 𝑆(𝒘, |𝒘|) which ensures that for 
any 𝜸 ∈ ℝ( such that 𝑓 𝒘⊙ 𝜸 = 𝑓(𝒘):

𝑆 𝒘⊙ 𝜸, |𝒘⊙ 𝜸| = 𝑆(𝒘, |𝒘|)

• This also covers normalization layers 
(BatchNorm, LayerNorm) and makes 
sharpness reparametrization-invariant for 
the whole modern networks (ResNets / ViTs)

• Worst-case sharpness: 

Source: Kwon et al., ICML’21

for a proof: see our paper or Kwon et al.



Adap3ve sharpness: beAer correla3on with generaliza3on

• Adap%ve sharpness is reported to correlate be[er with generalizaOon (se`ng: 
WideResNet-16-8 on CIFAR-10)
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“ASAM: Adap)ve Sharpness-Aware Minimiza)on for Scale-Invariant Learning of Deep Neural Networks” (Kwon et al., ICML’21)

Very nice, no? Is adaptive sharpness the answer to the generalization puzzle?

τ = 0.174 τ = 0.636



Mo3va3on of our work

What we mean by modern prac%cal seVngs:
• datasets beyond toyish CIFAR-10 / SVHN, 
• vision transformers, 
• fine-tuning (totally underexplored), 
• out-of-distribuOon generalizaOon.
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Main ques%on we want to answer: Can adap-ve sharpness capture 
generaliza-on in modern prac-cal se8ngs?

We want to have a definite answer about whether sharpness is the right quan%ty!



Another concern: sensitivity to the scale of the classifier
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We will benchmark all sharpness definiOons with and without logit normalizaOon

• Sharpness is strange for classificaOon: scaling 
the logits by 𝛼 ≥ 0 will preserve the classifier 
but can arbitrarily change sharpness 

• AdapOve sharpness is no excepOon: you can 
keep opOmizing the cross-entropy loss and 
this will drive adapOve sharpness to 0

Linear model that achieves 100% train accuracy

• This is well illustrated on linear models: 𝐰) ← 𝛼𝒘

• Possible soluOon: logit normaliza%on



SeEng #1: ViTs trained from scratch on ImageNet
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The correlation (τ) is either close to 0 or even slightly negative (-0.42 for ImageNet-A)!



SeEng #2: ViTs fine-tuned from CLIP on ImageNet
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The correlaOon is again either close to 0 or nega%ve, especially on 
distribuOon shiIs like ImageNet-R and ImageNet-A (as low as -0.51 and -0.58!)



SeEng #3: BERT models fine-tuned on MNLI
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• This case is famous since OOD generalizaGon (see HANS lexical) can be very different
• However, sharpness is not helpful to disGnguish which soluGons will generalize beEer for OOD



SeEng #4: ResNets and ViTs trained from scratch on CIFAR-10
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• Maybe sharpness has to be measured close to a min? select only models ≤1% train error

• PosiOve correlaOon is present but only within subgroups of models trained with the 
same augmentaOons

• Globally, however, correlaOon is either close to 0 or nega%ve (as much as -0.68!)



So what does sharpness really capture?
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• Overall, we observe that sharpness doesn't correlate well with generalizaOon but rather 
with some training parameters like the learning rate

• However, the learning rate can posiOvely or negaOvely correlate with generalizaOon 
depending on the setup

• Roughly speaking: large LRs are good for pretraining (at least for CNNs), small LRs are 
good for fine-tuning

Training ResNet from scratch Finetuning ViT on ImageNet



Is sharpness the right quan3ty in the first place? Theore3cal insights
• Simple model: sparse regression with a diagonal linear network 𝜷 ≔ 𝒖⊙ 𝒗
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for 𝐿 𝒘 = 0 and 𝑿!𝑿 = 𝑰:

• For appropriate adapOve sharpness with 
𝑐* = 𝑣* /|𝑢*| for 1 ≤ 𝑖 ≤ 𝑑 and 𝑐* = 𝑢* /|𝑣*| for 𝑑 + 1 ≤ 𝑖 ≤ 2𝑑

we get for 𝜌 → 0 that different sharpness definiOons capture totally different quan%%es:

• However, we know apriori that for sparse regression only | 𝜷 |! is the right quanOty 

• Thus, only a very specific sharpness definiOon for this given problem can explain 
generalizaOon



What can go wrong with the sharpness definition?
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• Our analysis suggests that sharpness can be the right quanOty 

• However, choosing the right definiOon of sharpness requires a precise understanding 
of the data and how it interacts with the architecture 

• This is obviously challenging beyond toy models!

Empirical valida%on: a bunch of diagonal linear nets trained with different LR and init



Note: lots of experiments in the appendix
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• We tried many-many sharpness 
definiOons (ℓ$ vs. ℓ+ norms, avg- vs. 
worst-case, with/without normalizaOon, 
adapOve vs. non-adapOve sharpness)

• 50+ pages of appendix!

• We hope we answered the quesOon 
comprehensively 



Outlook

• Is it even possible to have a single measure that would be causally related to  
generalization? 

• I think it’s highly unlikely and too good to be true (as the DLN example illustrates: 
this depends a lot on the data distribution)

• But: there are some creative proposals like computing disagreement on unlabeled 
data which correlates pretty well with generalization 

• However, for this, we need at least a small amount of unseen unlabeled data… then 
why not assuming that we have unseen labeled data? 

• Regarding the success of sharpness-aware minimization: it must be a combination of 
sharpness with some implicit bias of (S)GD that we don’t quite understand
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Happy to discuss more :)

Thanks for your acen%on!


