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Question: Can reparametrization-invariant sharpness capture

Training ViT from scratch
ImageNet, T=0.08

generalization in modern practical settings?

1..

0.35 - = b
2l [
0.30 A x" ] ®
& O
@ a°® .. @)

0 25 - "x = .4 "'g P ¥ TN
- Uie” T OFR|
b

1 1 | 1 1 1
0.10 0.12 0.14 0.16 0.18 0.20

Worst-case [, adaptive sharpness

! Correlation t=0

sd/do
0.0
0.1
Aug
none
light
medium
strong
wd
0.03
0.1

0.25 A

Test error
o o o
N N N
N w E=y

o
N
=

0.20 A

Fine-tuning CLIP ViT
ImageNet t=0.04

s RETA

0.05

0.10

0.15

0.20

0.25

0.30

Worst-case [, adaptive sharpness

! Correlation t=0

-4.25
-450 B
S
-4.75 3
-5.00 ©
()}
c
-5.25 €
©
-5.50 @
-5.75

Test error
© o o o
[#)] ~ e 0] O

o
n

Fine-tuning BERT models

HANS lexical T=-0.09

)
@
)

o 0.162

o
=
N
o

MNLI test error

0.158

0.156

0.154

0.070 0.072 0.074 0.076 0.078 0.080
Worst-case [, adaptive sharpness

' Correlation t=0

13 March 2023, OOD robustness + generalization reading group (CMU)



Big picture: understanding the generalization puzzle
in overparametrized deep learning

Different global minima can generalize very differently
e.g., see “Bad Global Minima Exist and SGD Can Reach Them” (Liu et al. NeurIPS’19)

What measure computed on the training set can distinguish the minima
which generalize well?

Can we figure this measure and optimize it for training? (+ use it as a tool
to understand the generalization puzzle)



Prior work: finding such measures is actually not easy!

* Main ref: “Fantastic Generalization

ref batchsize dropout rate depth optimizer decay width overall T v
. vc dim 19 0.000 0.000 0.000 |—0.909 0.000 0.000 |—0.171 | —0.251 }-0.154
” # params 20 0.000 0.000 0.000 |—0.909 0.000 0.000 |—0.171| —0.175 |-0.154
Measures and Where to Find Them 20| oume | o | o [ofem| g | omes |Toaer| Todi [oane
pacbayes 48 0.372 —0.457 0.042 0.644 0.179 —0.179 [—0.142 0.064 0.066
. ) . . . sharpness-orig 52 0.542 —0.359 0.716 0.816 0.297 0.591 | 0.185 0.400 0.398
pacbayes-orig 49 0.526 —0.076 0.705 0.546 0.341 0.564 |—0.086 0.293 0.360
(J Ia ng et a I . IC LR 20) Wh IC h h Igh | Ights frob-distance 40 —0.317 —0.833 —0.718 0.526 | —0.214 —0.669 [—0.166 | —0.263 [-0.341
’ spectral-init 25 —0.330 —0.845 —0.721 |—0.908 | —0.208 —0.313 [—0.231 | —0.576 [-0.508
. . spectral-orig 26 —0.262 —0.762 —0.665 |—0.908 | —0.131 —0.073 [—0.240 | —0.537 [-0.434
spectral-orig-main 28 —0.262 —0.762 —0.665 |—0.908 | —0.131 —0.073 [—0.240 | —0.537 [-0.434
Sha rpness aS a p rOI I l ISI ng l I lea S u re fro/spec 33 0.563 0.351 0.744 |—0.898 0.326 0.665 |—0.053 | —0.008 0.243
prod-of-spec 32 —0.464 —0.724 —0.722 |—0.909 | —0.197 —0.142 [—0.218 | —0.559 [-0.482
prod-of-spec/margin 31 —0.308 —0.782 —0.702 |[—0.907 —0.166 —0.148 |—-0.179 —0.570 [-0.456
sum-of-spec 35 —0.464 —0.724 —0.722 0.909 | —0.197 —0.142 [—0.218 0.102 |-0.223
sum-of-spec/margin 34 —0.308 —0.782 —0.702 0.909 | —0.166 —0.148 [—0.179 0.064 |-0.197
spec-dist 41 —0.458 —0.838 —0.568 0.738 | —0.319 —0.182 [—0.171 | —0.110 [-0.257
prod-of-fro 37 0.440 —0.199 0.538 |—0.909 0.321 0.731 |—0.101 | —0.297 0.117
PY . prod-of-fro/margin 36 0.513 —0.291 0.579 |—0.907 0.364 0.739 |—0.088 | —0.295 0.130
a Ca n We expec r0| I l S u C I I leas u re . sum-of-fro 39 0.440 —0.199 0.538 0.913 0.321 0.731 |—0.101 0.418 0.378
sum-of-fro/margin 38 0.520 —0.369 0.598 0.882 0.380 0.738 |—0.080 0.391 0.381
. 1/margin 22 —0.312 0.593 —0.234 |—0.758 | —0.223 0.211 [—0.125 | —0.124 |-0.121
. neg-entropy 23 0.346 —0.529 0.251 0.632 0.220 —0.157 | 0.104 0.148 0.124
1. Causal relation: smaller measure = |z 20| S | o | oy | ses) e oo odor) odds | oas
path-norm/margin 43 0.363 0.017 0.148 0.922 0.230 0.280 0.173 0.374 0.305
. . . param-norm 42 0.236 —0.516 0.174 0.330 0.187 0.124 |—0.170 0.073 0.052
fisher-rao 45 0.396 0.147 0.240 |—0.516 0.120 0.551 | 0.177 0.090 0.160
bette r ge n e ra | |Zat| O n ( U n |Ve rsa I Iy) cross-entropy 21 0.440 —0.402 0.140 0.390 0.149 0.232 | 0.080 0.149 0.147
1/o pacbayes 53 0.501 —0.033 0.744 0.200 0.346 0.609 | 0.056 0.303 0.346
° 1/o sharpness 54 0.532 —0.326 0.711 0.776 0.296 0.592 | 0.263 0.399 0.406
2 Co rrelatlon . Sma | |er measu r-e : num-step-0.1-to-0.01-loss |64 —0.151 —0.069 —0.014 0.114 0.072 —0.046 [—0.021 | —0.088 [-0.016
. . num-step-to-0.1-loss 63 —0.664 —0.861 —0.255 0.440 | —0.030 —0.628 | 0.043 | —0.264 [-0.279
1/a’ sharpness mag 62 0.570 0.148 0.762 0.824 0.297 0.741 | 0.269 0.484 0.516
. . 1/o’ pacbayes mag 61 0.490 —0.215 0.505 0.896 0.186 0.147 | 0.195 0.365 0.315
better genera | Izatlon (but there may pac-sharpness-mag-init |59 —0.293 | —0.841 | —0.698 |—0.909 | —0.240 |—0.631 |—0.171 | —0.225 |-0.541
pac-sharpness-mag-orig 60 0.401 —0.514 0.321 —0.909 0.181 0.281 |—0.171 —0.158 -0.059
pacbayes-mag-init 56 0.425 —0.658 —0.035 0.874 0.099 —0.407 | 0.069 0.175 0.052
. pacbayes-mag-orig 57 0.532 —0.480 0.508 0.902 0.188 0.155 | 0.186 0.410 0.284
ex I St CO u nte r‘exa m p I eS) grad-noise-final 66 0.452 0.119 0.427 0.141 0.245 0.432 | 0.230 0.311 0.292
grad-noise-epoch-1 65 0.071 0.378 0.376 |—0.517 0.121 0.221 | 0.037 0.070 0.098
oracle 0.01 0.579 0.885 0.736 0.920 0.529 0.622 | 0.502 0.851 0.682
e o oracle 0.02 0.414 0.673 0.548 0.742 0.346 0.447 | 0.316 0.726 0.498
3 SufﬁCIent but not necessa r * S m a | I oracle 0.05 0.123 0.350 0.305 0.401 0.132 0.201 0.142 0.456 0.236
L] . oracle 0.1 0.069 0.227 0.132 0.223 0.086 0.121 0.093 0.241 0.136
canonical ordering —0.652 0.969 0.733 0.909 | —0.055 0.735 | 0.171 0.005 0.402
canonical ordering depth —0.032 0.001 0.033 [—0.909 | —0.061 —0.020 | 0.024 | —0.363 [-0.138

measure = good generalization;
, ] Table 5: Complexity measures (rows), hyperparameters (columns) and the rank-correlation co-
Ia rge measure = can’'t Say 4 nyth INE efficients with models trained on CIFAR-10.

 We will focus on 2. and 3. showing they don’t hold for sharpness (this will also rule out 1.)



Flat vs. sharp minima: intuition

Popular intuition: the test loss will be close to the training loss for a flat minimum

Training Function

L

' Testing Function
(can be O0OD)

Flat Minimum Sharp Minimum
Source: “On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima” (Keskar et al., ICLR’17)

 Keskar et al., ICLR’17: small-batch SGD converges to flat minima unlike large-batch SGD
* Sharpness also received renewed interest with the Edge of Stability phenomenon and

the empirical success of Sharpness-Aware Minimization
3



https://arxiv.org/abs/1609.04836

Flat vs. sharp minima: theory

 There are generalization bounds based on sharpness

| w—w0]|2 m
. ——2 +log(">) + 10
]EuNJV(U,U2I) [L(fw+u)] < EuNJV(u,ozl) [L(fw+u)] + \/ : m — 1

perturbed population loss perturbed training loss term that depends on the scale of the predictor

* But they can be often of limited use as illustrated well by Jiang et al., ICLR’20

overall T . o
ve dim —0 251 T = rank correlation coefficient:
# params —0.175 7(t,s) = ﬁ Zsign(ti —t;)sign(s; — s;)
sharpness 0.282 (M-1) =
pacbayes 0.064

* While there exist networks for which these bounds can be quite tight (Lotfi et al.,
NeurlPS’22), this doesn’t apply to all possible networks = these quantities are not
necessarily meaningful to solve the generalization puzzle



https://arxiv.org/abs/1912.02178
https://arxiv.org/abs/2211.13609
https://arxiv.org/abs/2211.13609

Problems with the standard sharpness definitions

max  L(fwiv) = L(fw)  Tr(V§ L(f) Amaz (Vi L))
Vi | <a(|wi|+1)
Keskar et al., ICLR’17 Keskar et al., ICLR’17, Keskar et al., ICLR’17,
+ many other papers Damian et al., NeurlPS’21 + many other papers

+ many other papers

Main problem (Dinh et al., ICML'17): lack of invariance to layerwise rescaling:

%V -o(fWx) =V :-o(Wx) (fora homogeneous o) = same network but with

different sharpness!

However, this is pretty easy to fix: adaptive sharpness is invariant to such rescaling

and is reported to correlate better with generalization
“ASAM: Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning of Deep Neural Networks” (Kwon et al., ICML'21)



Adaptive sharpness: definition

Average-case sharpness: 2 (w,c) £ E (5 )p, Loy(w +8) — Loy (w)
d~N(0,p%diag(c?))

Worst-case sharpness: SP (w,c) 2 Esp. ”6®ma)“< 3 Ls(w + 0) — Ls(w)
c—1 2 5p
Choosing ¢ := |w| leads to adaptive f2
sharpness S(w, |w|) which ensures that for
any Y € RP suchthat f(w ©Q y) = f(w):
SwOVyIwOyD=5Sw,w) Wa b o

105 /

This also covers normalization layers i

115

(BatchNorm, LayerNorm) and makes ;RS P DO I PO NP, ivw

. . . . w
sharpness reparametrization-invariant for !

. Source: Kwon et al., ICML'21
the whole modern networks (ResNets / ViTs) for a proof: see our paper or Kwon et al.



Adaptive sharpness: better correlation with generalization

Adaptive sharpness is reported to correlate better with generalization (setting:
WideResNet-16-8 on CIFAR-10)
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“ASAM: Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning of Deep Neural Networks” (Kwon et al., ICML'21)

Very nice, no? Is adaptive sharpness the answer to the generalization puzzle?
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Motivation of our work

Main question we want to answer: Can adaptive sharpness capture
generalization in modern practical settings?

What we mean by modern practical settings:
* datasets beyond toyish CIFAR-10 / SVHN,
e vision transformers,
* fine-tuning (totally underexplored),
e out-of-distribution generalization.

We want to have a definite answer about whether sharpness is the right quantity!



Another concern: sensitivity to the scale of the classifier

Sharpness is strange for classification: scaling Linear model that achieves 100% train accuracy

. . . po 0.20
the logits by a = 0 will preserve the classifier —e— Adaptive sharpness, p=0.5

. . Adaptive sharpness, p =0.25
but can arbitrarily change sharpness 01s R e T

Adaptive sharpness is ho exception: you can

Sharpness
o
=
o
.\‘
I

keep optimizing the cross-entropy loss and / !
this will drive adaptive sharpness to 0 0.05 / \
/././ e~ ® 1l . \@‘ e
This is well illustrated on linear models: W' « awg oo ewesssziee” et DR
0= 1094 107+ 39° 10! 102 103
Possible solution: logit normalization Weight scaling coefficient

fw(w) £ = f'w(m)
\/% S (fw(®)i — favg)?

K
1
) where favg — E E fw(w)j
J=1

We will benchmark all sharpness definitions with and without logit normalization



Setting #1: ViTs trained from scratch on ImageNet

With logit normalization

ImageNet, T=0.08
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Figure 2: ViT-B/16 trained from scratch on ImageNet-1k. We show for 56 models from Steiner et al.
(2021) the test error on ImageNet or its variants (distribution shifts) vs worst-case £, sharpness with (top) or

without (bottom) normalization at p = 0.002. The color indicates whether the networks were trained with stochastic
depth /dropout.

The correlation (1) is either close to 0 or even slightly negative (-0.42 for ImageNet-A)!
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Setting #2: ViTs fine-tuned from CLIP on ImageNet
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Figure 3: Fine-tuning CLIP ViT-B/32 on ImageNet-1k. We show for 72 models from Wortsman et al. (2022a)
the test error on ImageNet or its variants (distribution shifts) vs worst-case £~ sharpness with (top) or without
(bottom) normalization at p = 0.002. Darker color indicates larger learning rate used for fine-tuning.

The correlation is again either close to 0 or negative, especially on
distribution shifts like ImageNet-R and ImageNet-A (as low as -0.51 and -0.58!)
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Figure 4: Fine-tuning BERT on MNLI. We show for 50 models the error on MNLI or out-of-distribution domains

Setting #3: BERT models fine-tuned on MNLI
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indicates higher test error on MNLI.

This case is famous since OOD generalization (see HANS lexical) can be very different

However, sharpness is not helpful to distinguish which solutions will generalize better for OOD
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Setting #4: ResNets and ViTs trained from scratch on CIFAR-10

 Maybe sharpness has to be measured close to a min? select only models €£1% train error
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* Positive correlation is present but only within subgroups of models trained with the

same augmentations
* Globally, however, correlation is either close to 0 or negative (as much as -0.68!)

13



Learning rate
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So what does sharpness really capture?

Overall, we observe that sharpness doesn't correlate well with generalization but rather

with some training parameters like the learning rate

Training ResNet from scratch
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Finetuning ViT on ImageNet
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However, the learning rate can positively or negatively correlate with generalization

Roughly speaking: large LRs are good for pretraining (at least for CNNs), small LRs are

good for fine-tuning
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Is sharpness the right quantity in the first place? Theoretical insights

* Simple model: sparse regression with a diagonal linear network g :==u (O v
_ |diag(v ©®v) diag(u ®©v)

.:: 2 _ Ty — J. 2 =
L(w) = | X(u©wv) -yl forkw)=0andX'X =11 V°L(w) diag(u ®v) diag(u ® u)

* For appropriate adaptive sharpness with
¢i =+/|vil/|uj| for1 <i<dandc; =+|ul/|vi| ford +1 <i<2d

we get for p — 0 that different sharpness definitions capture totally different quantities:

d d
1 1
Sthog(w,€) = 53 uilvil/|uil + 5 viluil/[vil = [Bll,  Shae(w,€) = max Jui|lvi| = |18l
23 23

avg 1<:<d

* However, we know apriori that for sparse regression only ||B]|; is the right quantity

* Thus, only a very specific sharpness definition for this given problem can explain
generalization



Test loss

What can go wrong with the sharpness definition?

Empirical validation: a bunch of diagonal linear nets trained with different LR and init
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Our analysis suggests that sharpness can be the right quantity

However, choosing the right definition of sharpness requires a precise understanding
of the data and how it interacts with the architecture

This is obviously challenging beyond toy models!
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Note: lots of experiments in the appendix

 We tried many-many sharpness
definitions (£, vs. £, norms, avg- vs.
worst-case, with/without normalization,
adaptive vs. non-adaptive sharpness)

* 50+ pages of appendix!

* We hope we answered the question
comprehensively

Appendix

The appendix is organized as follows:

Sec. A: additional related work.

Sec. B: omitted derivations for sharpness when p — 0, first for the general case and then specifically for
diagonal linear networks.

Sec. C: additional figures about ViTs from Steiner et al. (2021) trained with different hyperparameter
settings on ImageNet-1k. We observe that different sharpness variants are not predictive of the
performance on ImageNet and the OOD datasets, typically only separating models by stochastic depth /
dropout, but not ranking them according to generalization, and often even yielding a negative correlation
with OOD test error.

Sec. D: figures about ViTs from Steiner et al. (2021) pre-trained on ImageNet-21k and then fine-tuned
on ImageNet-1k. The observations are very similar to those for training on ImageNet-1k from scratch:
sharpness variants are not predictive of the performance on ImageNet, and they often lead to a negative
correlation with OOD test error.

Sec. E: figures for combined analysis of ViTs from Steiner et al. (2021) both with and without
ImageNet-21k pre-training. We find the better-generalizing models pretrained on ImageNet-21k to have
significantly higher worst-case sharpness and roughly equal or higher logit-normalized average-case
adaptive sharpness, underlining that the models’ generalization properties resulting from different
pretraining datasets are not captured.

Sec. F: additional details and figures for CLIP models fine-tuned on ImageNet. We observe that
sharpness variants are not predictive of the performance on ImageNet and ImageNet-V2. Moreover,
there is in most cases a negative correlation with test error in presence of distribution shifts which is
likely to be related to the influence that the learning rate has on sharpness.

Sec. G: additional details and figures for BERT models fine-tuned on MNLI. We find that all sharpness
variants we consider are not predictive of the generalization performance of the model, and in some

cases there is rather a weak negative correlation between sharpness and test error on out-of-distribution
tasks from HANS.

Sec. H: additional details and ablation studies for CIFAR-10 models. We analyze the role of data used
to evaluate sharpness, the role of the number of iterations in APGD, the role of m in m-sharpness, and
the influence of different sharpness definitions and radii on correlation with generalization. Overall,
we conclude that none of the considered sharpness definitions or radii correlates positively with
generalization nor that low sharpness implies good performance of the model.
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Outlook

Is it even possible to have a single measure that would be causally related to
generalization?

| think it’s highly unlikely and too good to be true (as the DLN example illustrates:
this depends a lot on the data distribution)

But: there are some creative proposals like computing disagreement on unlabeled
data which correlates pretty well with generalization

However, for this, we need at least a small amount of unseen unlabeled data... then
why not assuming that we have unseen labeled data?

Regarding the success of sharpness-aware minimization: it must be a combination of
sharpness with some implicit bias of (S)GD that we don’t quite understand

Thanks for your attention!

Happy to discuss more :)



